Algorithmic Game Theory

Essential μ-Compatible Subgames for Obtaining a von Neumann-Morgenstern Stable Set in an Assignment Game. . . . . . . . . . . . . . 343 Keisuke Bando and Yakuma Furusawa Repeated Multimarket Contact with Observation Errors . . . . . . . . . . . . . . . . 344 Atsushi Iwasaki, Tadashi Sekiguchi, Shun Yamamoto, and Makoto Yokoo Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

[1]  Andreas S. Schulz,et al.  On the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games , 2006, WINE.

[2]  Martin Gairing,et al.  Total Latency in Singleton Congestion Games , 2007, WINE.

[3]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[4]  Jérôme Monnot,et al.  Complexity and Approximation Results for the Connected Vertex Cover Problem , 2007, WG.

[5]  Csaba D. Tóth,et al.  Selfish Load Balancing and Atomic Congestion Games , 2004, SPAA '04.

[6]  Christos H. Papadimitriou,et al.  Worst-case equilibria , 1999 .

[7]  Marios Mavronicolas,et al.  Nash Equilibria in Discrete Routing Games with Convex Latency Functions , 2004, ICALP.

[8]  Max Klimm,et al.  Efficiency of Equilibria in Uniform Matroid Congestion Games , 2016, SAGT.

[9]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[10]  Tim Roughgarden The price of anarchy is independent of the network topology , 2003, J. Comput. Syst. Sci..

[11]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[12]  Archie C. Chapman,et al.  On the Existence of Pure Strategy Nash Equilibria in Integer-Splittable Weighted Congestion Games , 2011, SAGT.

[13]  Martin Gairing,et al.  Exact Price of Anarchy for Polynomial Congestion Games , 2006, STACS.

[14]  Yossi Azar,et al.  The Price of Routing Unsplittable Flow , 2005, STOC '05.

[15]  Robert W. Rosenthal,et al.  The network equilibrium problem in integers , 1973, Networks.

[16]  Vahab S. Mirrokni,et al.  Sink equilibria and convergence , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[17]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .

[18]  Vicki H. Allan,et al.  Manipulation of Weighted Voting Games via Annexation and Merging , 2012, ICAART.

[19]  A. C. Pigou Economics of welfare , 1920 .

[20]  Tim Roughgarden,et al.  How bad is selfish routing? , 2002, JACM.

[21]  Berthold Vöcking,et al.  On the Impact of Combinatorial Structure on Congestion Games , 2006, FOCS.

[22]  José R. Correa,et al.  Optimal Coordination Mechanisms for Multi-job Scheduling Games , 2014, ESA.

[23]  Britta Peis,et al.  Resource Buying Games , 2012, ESA.

[24]  Elias Koutsoupias,et al.  The price of anarchy of finite congestion games , 2005, STOC '05.

[25]  Michel X. Goemans,et al.  Matroids Are Immune to Braess' Paradox , 2015, Math. Oper. Res..

[26]  Max Klimm,et al.  Resource Competition on Integral Polymatroids , 2014, WINE.

[27]  Vicki H. Allan,et al.  New Bounds on False-Name Manipulations in Weighted Voting Games , 2014, FLAIRS.

[28]  Ioannis Caragiannis,et al.  Tight Bounds for Selfish and Greedy Load Balancing , 2006, ICALP.

[29]  Berthold Vöcking,et al.  Pure Nash equilibria in player-specific and weighted congestion games , 2009, Theor. Comput. Sci..

[30]  Marios Mavronicolas,et al.  A new model for selfish routing , 2008, Theor. Comput. Sci..

[31]  Dimitris Fotakis,et al.  Stackelberg Strategies for Atomic Congestion Games , 2007, Theory of Computing Systems.