A random set description of a possibility measure and its natural extension

The relationship is studied between possibility and necessity measures defined on arbitrary spaces, the theory of imprecise probabilities, and elementary random set theory. It is shown how special random sets can be used to generate normal possibility and necessity measures, as well as their natural extensions. This leads to interesting alternative formulas for the calculation of these natural extensions.

[1]  D. Aeyels,et al.  On the Coherence of Supremum Preserving Upper Previsions , 1996 .

[2]  Gert de Cooman,et al.  POSSIBILITY THEORY III: POSSIBILISTIC INDEPENDENCE , 1997 .

[3]  N. Shilkret Maxitive measure and integration , 1971 .

[4]  Vakgroep Elektrische EnergietechniekTechnologiepark Possibility Theory I the Measure-and Integral-theoretic Groundwork , 1997 .

[5]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[6]  I. R. Goodman Some new results concerning random sets and fuzzy sets , 1984, Inf. Sci..

[7]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[8]  Vakgroep Elektrische EnergietechniekTechnologiepark Possibility Theory Ii Conditional Possibility , 1997 .

[9]  L. M. M.-T. Theory of Probability , 1929, Nature.

[10]  Gert de Cooman,et al.  Coherence of rules for defining conditional possibility , 1999, Int. J. Approx. Reason..

[11]  H. Piaggio Mathematical Analysis , 1955, Nature.

[12]  Gert de Cooman,et al.  POSSIBILITY THEORY II: CONDITIONAL POSSIBILITY , 1997 .

[13]  Gert de Cooman,et al.  A behavioral model for linguistic uncertainty , 2001, Inf. Sci..

[14]  Gert de Cooman,et al.  Integration in possibility theory. , 2000 .

[15]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[16]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[17]  G. de Cooman,et al.  Describing linguistic information in a behavioural framework: Possible or not? , 1996 .

[18]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[19]  Etienne E. Kerre,et al.  Possibility and necessity integrals , 1996, Fuzzy Sets Syst..

[20]  Etienne Kerre,et al.  Possibility theory: an integral theoretic approach , 1992 .

[21]  G. Matheron Random Sets and Integral Geometry , 1976 .

[22]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[23]  Peter Walley,et al.  STATISTICAL INFERENCES BASED ON A SECOND-ORDER POSSIBILITY DISTRIBUTION , 1997 .

[24]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[25]  S. Chanas,et al.  Single value simulation of fuzzy variable—some further results , 1989 .

[26]  S. Chanas,et al.  Single value simulation of fuzzy variables , 1988 .

[27]  J. Loewenthal DECISION , 1969, Definitions.

[28]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[29]  G. Cooman POSSIBILITY THEORY I: THE MEASURE- AND INTEGRAL-THEORETIC GROUNDWORK , 1997 .

[30]  D. Denneberg Non-additive measure and integral , 1994 .

[31]  Peter Walley,et al.  Measures of Uncertainty in Expert Systems , 1996, Artif. Intell..

[32]  Etienne E. Kerre,et al.  Possibility Theory Iii Possibilistic Independence , 1997 .

[33]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .