A random set description of a possibility measure and its natural extension
暂无分享,去创建一个
[1] D. Aeyels,et al. On the Coherence of Supremum Preserving Upper Previsions , 1996 .
[2] Gert de Cooman,et al. POSSIBILITY THEORY III: POSSIBILISTIC INDEPENDENCE , 1997 .
[3] N. Shilkret. Maxitive measure and integration , 1971 .
[4] Vakgroep Elektrische EnergietechniekTechnologiepark. Possibility Theory I the Measure-and Integral-theoretic Groundwork , 1997 .
[5] L. Zadeh. Fuzzy sets as a basis for a theory of possibility , 1999 .
[6] I. R. Goodman. Some new results concerning random sets and fuzzy sets , 1984, Inf. Sci..
[7] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[8] Vakgroep Elektrische EnergietechniekTechnologiepark. Possibility Theory Ii Conditional Possibility , 1997 .
[9] L. M. M.-T.. Theory of Probability , 1929, Nature.
[10] Gert de Cooman,et al. Coherence of rules for defining conditional possibility , 1999, Int. J. Approx. Reason..
[11] H. Piaggio. Mathematical Analysis , 1955, Nature.
[12] Gert de Cooman,et al. POSSIBILITY THEORY II: CONDITIONAL POSSIBILITY , 1997 .
[13] Gert de Cooman,et al. A behavioral model for linguistic uncertainty , 2001, Inf. Sci..
[14] Gert de Cooman,et al. Integration in possibility theory. , 2000 .
[15] G. L. S. Shackle,et al. Decision Order and Time in Human Affairs , 1962 .
[16] D. Dubois,et al. When upper probabilities are possibility measures , 1992 .
[17] G. de Cooman,et al. Describing linguistic information in a behavioural framework: Possible or not? , 1996 .
[18] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[19] Etienne E. Kerre,et al. Possibility and necessity integrals , 1996, Fuzzy Sets Syst..
[20] Etienne Kerre,et al. Possibility theory: an integral theoretic approach , 1992 .
[21] G. Matheron. Random Sets and Integral Geometry , 1976 .
[22] D. Dubois,et al. The mean value of a fuzzy number , 1987 .
[23] Peter Walley,et al. STATISTICAL INFERENCES BASED ON A SECOND-ORDER POSSIBILITY DISTRIBUTION , 1997 .
[24] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[25] S. Chanas,et al. Single value simulation of fuzzy variable—some further results , 1989 .
[26] S. Chanas,et al. Single value simulation of fuzzy variables , 1988 .
[27] J. Loewenthal. DECISION , 1969, Definitions.
[28] Gert de Cooman,et al. Supremum Preserving Upper Probabilities , 1999, Inf. Sci..
[29] G. Cooman. POSSIBILITY THEORY I: THE MEASURE- AND INTEGRAL-THEORETIC GROUNDWORK , 1997 .
[30] D. Denneberg. Non-additive measure and integral , 1994 .
[31] Peter Walley,et al. Measures of Uncertainty in Expert Systems , 1996, Artif. Intell..
[32] Etienne E. Kerre,et al. Possibility Theory Iii Possibilistic Independence , 1997 .
[33] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .