Computing Dominant Poles of Power System Multivariable Transfer Functions

This paper describes a numerical linear algebra algorithm to compute the dominant poies of multiinput/multioutput (MIMO) high-order transfer functions. The results presented are related to the study of electromechanical oscillations in large electric power systems, but the algorithm is completely general. The computed dominant poles may then be used to build modal equivalents for MIMO transfer functions of large linear systems, among other applications.

[1]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[2]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[3]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[4]  David H. Owens Dyadic expansion for the analysis of linear multivariable systems , 1974 .

[5]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.

[6]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[7]  Thomas Kailath,et al.  Linear Systems , 1980 .

[8]  Rajnikant V. Patel,et al.  Multivariable System Theory and Design , 1981 .

[9]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  N. Martins Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies , 1986, IEEE Transactions on Power Systems.

[12]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[13]  Maciejowsk Multivariable Feedback Design , 1989 .

[14]  M. G. Lauby,et al.  A comprehensive computer program package for small signal stability analysis of power systems , 1990 .

[15]  J. F. Hauer,et al.  Application of Prony analysis to the determination of modal content and equivalent models for measured power system response , 1991 .

[16]  Pierre R. Belanger Control Engineering: A Modern Approach , 1994 .

[17]  Paul Van Dooren,et al.  Numerical Linear Algebra Techniques for Systems and Control , 1994 .

[18]  D. Trudnowski Order reduction of large-scale linear oscillatory system models , 1994 .

[19]  Innocent Kamwa,et al.  Low-order black-box models for control system design in large power systems , 1995 .

[20]  G.J. Rogers,et al.  H/sub /spl infin damping controller design in large power systems , 1995 .

[21]  Adam Semlyen,et al.  Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis , 1996 .

[22]  Joe H. Chow,et al.  Power system reduction to simplify the design of damping controllers for interarea oscillations , 1996 .

[23]  Nelson Martins,et al.  Computing dominant poles of power system transfer functions , 1996 .

[24]  Nelson Martins,et al.  The dominant pole spectrum eigensolver [for power system stability analysis] , 1997 .

[25]  Adam Semlyen,et al.  s-domain methodology for assessing the small signal stability of complex systems in nonsinusoidal st , 1999 .

[26]  N. Martins,et al.  Retuning stabilizers for the north-south Brazilian interconnection , 1999, 1999 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364).