Neural block control for synchronous generators

In this paper, a novel approach to control a single generator, connected to an infinite bus, is presented. Modifying published results for nonlinear identification using recurrent neural networks, a block controllable neural identifier is proposed, based on this neural model a control law is derived, which combines sliding modes and block control. The neural identifier and the proposed control law allows to reject external disturbances caused by generator terminal short circuits and mechanical power variations. Applicability of the approach is tested via simulations.

[1]  A. G. Luk'yanov A BLOCK METHOD OF SYNTHESIS OF NONLINEAR SYSTEMS AT SLIDING MODES , 1998 .

[2]  Manolis A. Christodoulou,et al.  Dynamical Neural Networks that Ensure Exponential Identification Error Convergence , 1997, Neural Networks.

[3]  Max Donath,et al.  American Control Conference , 1993 .

[4]  Alexander S. Poznyak,et al.  Nonlinear adaptive trajectory tracking using dynamic neural networks , 1999, IEEE Trans. Neural Networks.

[5]  Damien Ernst,et al.  A control strategy for controllable series capacitor in electric power systems , 2001, Autom..

[6]  Johan A. K. Suykens,et al.  Artificial neural networks for modelling and control of non-linear systems , 1995 .

[7]  R. Ortega,et al.  Excitation control of synchronous generators via total energy-shaping , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[8]  Wladyslaw Mielczarski,et al.  Nonlinear field voltage control of a synchronous generator using feedback linearization , 1994, Autom..

[9]  R. Marino An example of a nonlinear regulator , 1984 .

[10]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[11]  Alexander G. Loukianov,et al.  Induction motor VSS control using neural networks , 2002 .

[12]  B. K. Panigrahi,et al.  ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE , 2010 .

[13]  Marija D. Ilic,et al.  Feedback linearizing excitation control on a full-scale power system model , 1994 .

[14]  H. Happ Power system control and stability , 1979, Proceedings of the IEEE.

[15]  Alexander G. Loukianov,et al.  Recurrent neural block form control , 2003, Autom..

[16]  B. Drazenovic,et al.  The invariance conditions in variable structure systems , 1969, Autom..

[17]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[18]  Madan M. Gupta,et al.  Neuro-Control Systems: Theory and Applications , 1993 .

[19]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[20]  K. R. Padiyar,et al.  ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY , 1990 .

[21]  David J. Hill,et al.  Transient stability enhancement and voltage regulation of power systems , 1993 .

[22]  Petar V. Kokotovic,et al.  A dynamic extension for LgV controllers , 1999, IEEE Trans. Autom. Control..

[23]  B. Draenovi The invariance conditions in variable structure systems , 1969 .