Electron Signatures of Reconnection in a Global eVlasiator Simulation

Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind–magnetosphere interaction from magnetohydrodynamic to hybrid ion‐kinetic, such as the state‐of‐the‐art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid‐ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat‐top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection‐related features can be reproduced despite strongly truncated electron physics and an ion‐scale spatial resolution. Ion‐scale dynamics and ion‐driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near‐Earth plasmas.

[1]  Natalia Ganushkina,et al.  Magnetohydrodynamic with Adaptively Embedded Particle-in-Cell model: MHD-AEPIC , 2021, J. Comput. Phys..

[2]  S. Schwartz,et al.  Structures in the terms of the Vlasov equation observed at Earth’s magnetopause , 2021, Nature Physics.

[3]  V. Roytershteyn,et al.  HYPERS simulations of solar wind interactions with the Earth's magnetosphere and the Moon , 2021 .

[4]  A. Vaivads,et al.  Non-Maxwellianity of electron distributions near Earth's magnetopause , 2021 .

[5]  A. Runov,et al.  Ion distribution functions in magnetotail reconnection: Global hybrid-Vlasov simulation results , 2021, Annales Geophysicae.

[6]  R. Nakamura,et al.  Remote Sensing of Magnetic Reconnection in the Magnetotail Using In Situ Multipoint Observations at the Plasma Sheet Boundary Layer , 2021, Journal of Geophysical Research: Space Physics.

[7]  E. Grigorenko,et al.  Investigation of Electron Distribution Functions Associated With Whistler Waves at Dipolarization Fronts in the Earth's Magnetotail: MMS Observations , 2020, Journal of Geophysical Research: Space Physics.

[8]  C. Russell,et al.  Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer. , 2020, Physical review letters.

[9]  M. Palmroth,et al.  Vlasov simulation of electrons in the context of hybrid global models: An eVlasiator approach , 2020, Annales Geophysicae.

[10]  E. Parker,et al.  MAGNETIC RECONNECTION , 2020, Plasma Physics for Astrophysics.

[11]  O. Hannuksela,et al.  fmihpc/vlasiator: Vlasiator 5.0 , 2020 .

[12]  C. Russell,et al.  Electron Bernstein waves driven by electron crescents near the electron diffusion region , 2020, Nature Communications.

[13]  C. Russell,et al.  Electron Heating by Debye-Scale Turbulence in Guide-Field Reconnection. , 2019, Physical review letters.

[14]  P. Lindqvist,et al.  Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields , 2019, Geophysical Research Letters.

[15]  E. Camporeale,et al.  ViDA: a Vlasov–DArwin solver for plasma physics at electron scales , 2019, Journal of Plasma Physics.

[16]  Y. Liu,et al.  Electron Distribution Functions Around a Reconnection X‐Line Resolved by the FOTE Method , 2019, Geophysical Research Letters.

[17]  Michael Wiltberger,et al.  GAMERA: A Three-dimensional Finite-volume MHD Solver for Non-orthogonal Curvilinear Geometries , 2018, The Astrophysical Journal Supplement Series.

[18]  J P Eastwood,et al.  Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space , 2018, Science.

[19]  S. Hoilijoki,et al.  Fast plasma sheet flows and X line motion in the Earth's magnetotail: results from a global hybrid-Vlasov simulation , 2018, Annales Geophysicae.

[20]  Urs Ganse,et al.  Vlasov methods in space physics and astrophysics , 2018, Living reviews in computational astrophysics.

[21]  C. Russell,et al.  An Electron‐Scale Current Sheet Without Bursty Reconnection Signatures Observed in the Near‐Earth Tail , 2018 .

[22]  C. Russell,et al.  Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events , 2017, Journal of Geophysical Research: Space Physics.

[23]  T. Pulkkinen,et al.  Tail reconnection in the global magnetospheric context: Vlasiator first results , 2017 .

[24]  Stefano Markidis,et al.  Scaling the Ion Inertial Length and Its Implications for Modeling Reconnection in Global Simulations , 2017 .

[25]  S. Markidis,et al.  Global Three‐Dimensional Simulation of Earth's Dayside Reconnection Using a Two‐Way Coupled Magnetohydrodynamics With Embedded Particle‐in‐Cell Model: Initial Results , 2017, 1704.03803.

[26]  P. Cassak,et al.  Reconnection rates and X line motion at the magnetopause: Global 2D‐3V hybrid‐Vlasov simulation results , 2017 .

[27]  C. Russell,et al.  Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm , 2017, Journal of geophysical research. Space physics.

[28]  C. Russell,et al.  Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection , 2016 .

[29]  C. Norgren,et al.  Electron jet of asymmetric reconnection , 2016 .

[30]  C. Russell,et al.  Transient, small‐scale field‐aligned currents in the plasma sheet boundary layer during storm time substorms , 2016, Geophysical research letters.

[31]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[32]  J. Birn,et al.  On the electron diffusion region in asymmetric reconnection with a guide magnetic field , 2016 .

[33]  M. Hesse,et al.  Electron energization and structure of the diffusion region during asymmetric reconnection , 2016 .

[34]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[35]  M. Swisdak,et al.  Quantifying gyrotropy in magnetic reconnection , 2015, 1509.00787.

[36]  M. Hesse,et al.  Particle-in-Cell Simulations of Collisionless Magnetic Reconnection with a Non-Uniform Guide Field , 2015, 1512.07844.

[37]  Minna Palmroth,et al.  Vlasiator: First global hybrid-Vlasov simulations of Earth's foreshock and magnetosheath , 2014 .

[38]  Enrico Camporeale,et al.  Neutral Vlasov kinetic theory of magnetized plasmas , 2014, 1411.6969.

[39]  Stefano Markidis,et al.  Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model , 2014, J. Comput. Phys..

[40]  David G. Sibeck,et al.  The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas , 2014 .

[41]  Michael Hesse,et al.  Electron nongyrotropy in the context of collisionless magnetic reconnection , 2013 .

[42]  Minna Palmroth,et al.  Preliminary testing of global hybrid-Vlasov simulation: Magnetosheath and cusps under northward interplanetary magnetic field , 2012 .

[43]  V. Angelopoulos,et al.  Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet , 2012 .

[44]  T. Pulkkinen,et al.  The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation , 2012 .

[45]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[46]  Wolfgang Baumjohann,et al.  Proton/electron temperature ratio in the magnetotail , 2011 .

[47]  William Daughton,et al.  Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas , 2011 .

[48]  Rumi Nakamura,et al.  Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field , 2008 .

[49]  Petr Hellinger,et al.  A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..

[50]  R. Grauer,et al.  Kinetic Vlasov simulations of collisionless magnetic reconnection , 2006, physics/0608175.

[51]  Wolfgang Baumjohann,et al.  Detailed analysis of low-energy electron streaming in the near-Earth neutral line region during a substorm , 2006 .

[52]  T. Mukai,et al.  Strong electron heating and non-Maxwellian behavior in magnetic reconnection , 2001 .

[53]  Zhihong Lin,et al.  A fluid-kinetic hybrid electron model for electromagnetic simulations , 2001 .