Interactive Visual Clutter Management in Scientific Visualization

Scientists visualize their data and interact with them on computers in order to thoroughly understand them. Nowadays, data become so large and complex that it is impossible to display the entire data on a single image. Scientific visualization often suffers from visual clutter problem because of high spacial resolution/dimension and temporal resolution. Interacting with the visualizations of large data, on the other hand, allows users to dynamically explore different parts of the data and gradually understand all information in the data. Information congestion and visual clutter exist in visualizations of different kinds of data, such as flow field data, tensor field data, and time-varying data. Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. Glyph as a powerful multivariate visualization technique is used to visualize data through its visual channels. Placing large number of glyphs over the entire 3D space results in occlusion and visual clutter that make the visualization ineffective. To avoid the occlusion in streamline and glyph visualization, we propose a view-dependent interactive 3D lens that removes the occluding streamlines/glyphs by pulling the them aside through animations. High resolution simulations are capable of generating very large

[1]  P. Fischer,et al.  Petascale algorithms for reactor hydrodynamics , 2008 .

[2]  Jarke J. van Wijk,et al.  A Probe for Local Flow Field Visualization , 1993, IEEE Visualization.

[3]  G. Kindlmann,et al.  Superquadric Glyphs for Symmetric Second-Order Tensors , 2010, IEEE Transactions on Visualization and Computer Graphics.

[4]  Ray W. Grout,et al.  Analyzing information transfer in time-varying multivariate data , 2011, 2011 IEEE Pacific Visualization Symposium.

[5]  Robert S. Laramee FIRST: a flexible and interactive resampling tool for CFD simulation data , 2003, Comput. Graph..

[6]  Paul Rosen,et al.  The graph camera , 2009, SIGGRAPH 2009.

[7]  Bernhard Schölkopf,et al.  HiFiVE: A Hilbert Space Embedding of Fiber Variability Estimates for Uncertainty Modeling and Visualization , 2013, Comput. Graph. Forum.

[8]  Thomas Ertl,et al.  Transparency in Interactive Technical Illustrations , 2002, Comput. Graph. Forum.

[9]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[10]  M. Sheelagh T. Carpendale,et al.  A framework for unifying presentation space , 2001, UIST '01.

[11]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[12]  Timo Ropinski,et al.  Coverage-based opacity estimation for interactive Depth of Field in molecular visualization , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[13]  M. Sheelagh T. Carpendale,et al.  Distortion viewing techniques for 3-dimensional data , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[14]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[15]  E. Reiman,et al.  Clustering huge data sets for parametric PET imaging. , 2003, Bio Systems.

[16]  Tobias Isenberg,et al.  A Design Study of Direct‐Touch Interaction for Exploratory 3D Scientific Visualization , 2012, Comput. Graph. Forum.

[17]  Tobias Isenberg,et al.  NPR Lenses: Interactive Tools for Non-Photorealistic Line Drawings , 2007, Smart Graphics.

[18]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[19]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[20]  M. Sheelagh T. Carpendale,et al.  Exploration of uncertainty in bidirectional vector fields , 2008, Electronic Imaging.

[21]  Niklas Elmqvist,et al.  A Taxonomy of 3D Occlusion Management for Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jens Schneider,et al.  ClearView: An Interactive Context Preserving Hotspot Visualization Technique , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  Tomoyuki Nishita,et al.  Occlusion-Free Animation of Driving Routes for Car Navigation Systems , 2005, IEEE Transactions on Visualization and Computer Graphics.

[24]  R. Henry,et al.  Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic Underpinnings , 2008, American Journal of Neuroradiology.

[25]  Steven G. Parker,et al.  Enhancing interactive particle visualization with advanced shading models , 2006, APGV '06.

[26]  Nelson L. Max,et al.  Direct volume visualization of three-dimensional vector fields , 1992, VVS.

[27]  Bernhard Preim,et al.  The FLOWLENS: A Focus-and-Context Visualization Approach for Exploration of Blood Flow in Cerebral Aneurysms , 2011, IEEE Transactions on Visualization and Computer Graphics.

[28]  Robert S. Laramee,et al.  Vector Glyphs for Surfaces: A Fast and Simple Glyph Placement Algorithm for Adaptive Resolution Meshes , 2008, VMV.

[29]  Jeff M. Phillips,et al.  Uncertainty visualization in HARDI based on ensembles of ODFs , 2012, 2012 IEEE Pacific Visualization Symposium.

[30]  Roger Crawfis,et al.  View point evaluation and streamline filtering for flow visualization , 2011, 2011 IEEE Pacific Visualization Symposium.

[31]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[32]  C. Tomasi The Earth Mover's Distance, Multi-Dimensional Scaling, and Color-Based Image Retrieval , 1997 .

[33]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[34]  Miguel A. Otaduy,et al.  Fast deformation of volume data using tetrahedral mesh rasterization , 2013, SCA '13.

[35]  Abigail Sellen,et al.  A study in interactive 3-D rotation using 2-D control devices , 1988, SIGGRAPH.

[36]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[37]  Carolina Cruz-Neira,et al.  Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .

[38]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[39]  Tobias Isenberg,et al.  FI3D: Direct-Touch Interaction for the Exploration of 3D Scientific Visualization Spaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[40]  Thomas Ertl,et al.  Interactive Cutaway Illustrations , 2003, Comput. Graph. Forum.

[41]  Daniel Weiskopf,et al.  Flow Radar Glyphs—Static Visualization of Unsteady Flow with Uncertainty , 2011, IEEE Transactions on Visualization and Computer Graphics.

[42]  Han-Wei Shen,et al.  Image-based streamline generation and rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[43]  John Viega,et al.  3D magic lenses , 1996, UIST '96.

[44]  Valerio Pascucci,et al.  Analysis of large-scale scalar data using hixels , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[45]  Orcun Goksel,et al.  B-Mode Ultrasound Image Simulation in Deformable 3-D Medium , 2009, IEEE Transactions on Medical Imaging.

[46]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2005, Eurographics.

[47]  Frank Weichert,et al.  Analysis of the Accuracy and Robustness of the Leap Motion Controller , 2013, Sensors.

[48]  Pak Chung Wong,et al.  Interactive streamline exploration and manipulation using deformation , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[49]  Ieee Transactions A Coherent Grid Traversal Approach to Visualizing Particle-Based Simulation Data , 2007 .

[50]  Kwan-Liu Ma,et al.  Simultaneous Classification of Time-Varying Volume Data Based on the Time Histogram , 2006, EuroVis.

[51]  M. Sheelagh T. Carpendale,et al.  Integrating expanding annotations with a 3D explosion probe , 2004, AVI.

[52]  Eduard Gröller,et al.  Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines , 2003, SCCG '03.

[53]  Nicholas Ayache,et al.  Image-based modeling of tumor growth in patients with glioma. , 2011 .

[54]  Chabane Djeraba,et al.  Real-time crowd motion analysis , 2008, 2008 19th International Conference on Pattern Recognition.

[55]  Deborah Silver,et al.  Illustrative Deformation for Data Exploration , 2007, IEEE Transactions on Visualization and Computer Graphics.

[56]  Andrea Brambilla,et al.  Visibility-oriented Visualization Design for Flow Illustration , 2014 .

[57]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[58]  R. Swinbank,et al.  Fibonacci grids: A novel approach to global modelling , 2006 .

[59]  Bernd Hamann,et al.  Spherical Terrain Rendering using the hierarchical HEALPix grid , 2011, VLUDS.

[60]  Han-Wei Shen,et al.  Visualizing time-varying features with TAC-based distance fields , 2009, 2009 IEEE Pacific Visualization Symposium.

[61]  Lijie Xu,et al.  An Information-Theoretic Framework for Flow Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[62]  Kwan-Liu Ma,et al.  A Study of Layout, Rendering, and Interaction Methods for Immersive Graph Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[63]  Weixing Wang,et al.  Scalable visualization of discrete velocity decompositions using spatially organized histograms , 2015, 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV).

[64]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .

[65]  Kwan-Liu Ma,et al.  View-Dependent Streamlines for 3D Vector Fields , 2010, IEEE Transactions on Visualization and Computer Graphics.

[66]  Wayne Tiller,et al.  Offsets of Two-Dimensional Profiles , 1984, IEEE Computer Graphics and Applications.

[67]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[68]  Jun Tao,et al.  A Deformation Framework for Focus+Context Flow Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[69]  M. Sheelagh T. Carpendale,et al.  Color Tunneling: Interactive Exploration and Selection in Volumetric Datasets , 2014, 2014 IEEE Pacific Visualization Symposium.

[70]  Christian Rössl,et al.  Opacity optimization for 3D line fields , 2013, ACM Trans. Graph..

[71]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[72]  Steven K. Feiner,et al.  Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations , 1992, The Visual Computer.

[73]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[74]  Wei Zeng,et al.  Conformal Magnifier: A Focus+Context Technique with Local Shape Preservation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[75]  Yehuda Koren,et al.  Topological Fisheye Views for Visualizing Large Graphs , 2004 .

[76]  W. Beyer CRC Standard Mathematical Tables and Formulae , 1991 .

[77]  Thomas Butkiewicz,et al.  Effectiveness of Structured Textures on Dynamically Changing Terrain-like Surfaces , 2016, IEEE Transactions on Visualization and Computer Graphics.

[78]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[79]  Yi Gu,et al.  TransGraph: Hierarchical Exploration of Transition Relationships in Time-Varying Volumetric Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[80]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[81]  Bernd Hamann,et al.  Dense Geometric Flow Visualization , 2005, EuroVis.

[82]  Rüdiger Westermann,et al.  Comparative visual analysis of vector field ensembles , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[83]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[84]  L. Ruby Leung,et al.  Moist Thermodynamics of the Madden–Julian Oscillation in a Cloud-Resolving Simulation , 2011 .

[85]  Voicu Popescu,et al.  A Curved Ray Camera for Handling Occlusions through Continuous Multiperspective Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[86]  Daniel F. Keefe,et al.  A Lightweight Tangible 3D Interface for Interactive Visualization of Thin Fiber Structures , 2013, IEEE Transactions on Visualization and Computer Graphics.

[87]  Don Dovey Vector plots for irregular grids , 1995, Proceedings Visualization '95.

[88]  Ghassan Hamarneh,et al.  Visualization and exploration of time-varying medical image data sets , 2007, GI '07.

[89]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[90]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[91]  Andy Cockburn,et al.  Through the looking glass: the use of lenses as an interface tool for Augmented Reality interfaces , 2004, GRAPHITE '04.

[92]  Alex T. Pang,et al.  Directional flow visualization of vector fields , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[93]  D. Feng,et al.  Segmentation of dynamic PET images using cluster analysis , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[94]  Anton L. Fuhrmann,et al.  Real-time techniques for 3D flow visualization , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[95]  Norbert Attig,et al.  Introduction to Molecular Dynamics Simulation , 2004 .

[96]  Bernd Hamann,et al.  A magnification lens for interactive volume visualization , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[97]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[98]  Robert S. Laramee,et al.  Visualization of flow past a marine turbine: the information-assisted search for sustainable energy , 2013, Comput. Vis. Sci..

[99]  Bart M. ter Haar Romeny,et al.  Fast and sleek glyph rendering for interactive HARDI data exploration , 2009, 2009 IEEE Pacific Visualization Symposium.

[100]  Robert S. Laramee,et al.  Visualization of Large, Time-Dependent, Abstract Data with Integrated Spherical and Parallel Coordinates , 2012, EuroVis.

[101]  Tobias Höllerer,et al.  Interactive tools for virtual x-ray vision in mobile augmented reality , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[102]  Christian Hüttig,et al.  The spiral grid: A new approach to discretize the sphere and its application to mantle convection , 2008 .

[103]  Voicu Popescu,et al.  Multiperspective Focus+Context Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[104]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[105]  John R. Kender,et al.  Optimization Algorithms for the Selection of Key Frame Sequences of Variable Length , 2002, ECCV.

[106]  Hiroshi Akibay,et al.  A tri-space visualization interface for analyzing time-varying multivariate volume data , 2007 .

[107]  Ken Shoemake,et al.  ARCBALL: a user interface for specifying three-dimensional orientation using a mouse , 1992 .

[108]  Tobias Isenberg,et al.  CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds , 2016, IEEE Transactions on Visualization and Computer Graphics.

[109]  Han-Wei Shen,et al.  Interactive Storyboard for Overall Time-Varying Data Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[110]  Robert S. Laramee,et al.  Visualisation of Sensor Data from Animal Movement , 2009, Comput. Graph. Forum.

[111]  Tobias Isenberg,et al.  Continuous Navigation of Nested Abstraction Levels , 2012, EuroVis.

[112]  Han-Wei Shen,et al.  Multiscale Time Activity Data Exploration via Temporal Clustering Visualization Spreadsheet , 2009, IEEE Transactions on Visualization and Computer Graphics.

[113]  Han-Wei Shen,et al.  Semi‐Automatic Time‐Series Transfer Functions via Temporal Clustering and Sequencing , 2009, Comput. Graph. Forum.

[114]  Klaus Mueller,et al.  The magic volume lens: an interactive focus+context technique for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[115]  Robert Michael Kirby,et al.  Visualizing multivalued data from 2D incompressible flows using concepts from painting , 1999, VIS '99.

[116]  Meinard Müller,et al.  Information retrieval for music and motion , 2007 .

[117]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[118]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[119]  Ravin Balakrishnan,et al.  Using deformations for browsing volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[120]  Ned Greene,et al.  Environment Mapping and Other Applications of World Projections , 1986, IEEE Computer Graphics and Applications.