Species survival emerge from rare events of individual migration

[1]  N. Brenner,et al.  Coexistence of productive and non-productive populations by fluctuation-driven spatio-temporal patterns. , 2014, Theoretical population biology.

[2]  Joseph L Simonis,et al.  Demographic stochasticity reduces the synchronizing effect of dispersal in predator-prey metapopulations. , 2012, Ecology.

[3]  A. McKane,et al.  Stochastic formulation of ecological models and their applications. , 2012, Trends in ecology & evolution.

[4]  David Vasseur,et al.  Consistent scaling of persistence time in metapopulations. , 2012, Ecology.

[5]  Amanda K. Winegardner,et al.  The terminology of metacommunity ecology. , 2012, Trends in ecology & evolution.

[6]  O. Ovaskainen,et al.  Stochastic models of population extinction. , 2010, Trends in ecology & evolution.

[7]  Jonathan Nathan,et al.  Periodic versus scale-free patterns in dryland vegetation , 2010, Proceedings of the Royal Society B: Biological Sciences.

[8]  Nadav M. Shnerb,et al.  Optimizing Metapopulation Sustainability through a Checkerboard Strategy , 2010, PLoS Comput. Biol..

[9]  J. Fox,et al.  Phase-locking and environmental fluctuations generate synchrony in a predator–prey community , 2009, Nature.

[10]  P. Jagers,et al.  Extinction , 2009, What Fire.

[11]  N. Shnerb,et al.  Stabilization of metapopulation cycles: toward a classification scheme. , 2008, Theoretical population biology.

[12]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.

[13]  Mario Pineda-Krch,et al.  GillespieSSA: Implementing the Gillespie Stochastic Simulation Algorithm in R , 2008 .

[14]  Sorin Solomon,et al.  Microscopic study reveals the singular origins of growth , 2008, 0803.2201.

[15]  S. Solomon,et al.  Local enrichment and its nonlocal consequences for victim–exploiter metapopulations , 2008, 0803.2210.

[16]  Damien Challet,et al.  The Universal Shape of Economic Recession and Recovery after a Shock , 2008, 0802.2004.

[17]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[18]  Nadav M. Shnerb,et al.  Extinction Rates for Fluctuation-Induced Metastabilities: A Real-Space WKB Approach , 2006, q-bio/0611049.

[19]  Nadav M Shnerb,et al.  Amplitude-dependent frequency, desynchronization, and stabilization in noisy metapopulation dynamics. , 2006, Physical review letters.

[20]  R. Solé,et al.  Ecological networks and their fragility , 2006, Nature.

[21]  B. Kerr,et al.  Local migration promotes competitive restraint in a host–pathogen 'tragedy of the commons' , 2006, Nature.

[22]  Y. Louzoun,et al.  Catalyst-induced growth with limited catalyst lifespan and competition. , 2006, Journal of theoretical biology.

[23]  Sutirth Dey,et al.  Stability via Asynchrony in Drosophila Metapopulations with Low Migration Rates , 2006, Science.

[24]  J. Ross,et al.  Stochastic models for mainland-island metapopulations in static and dynamic landscapes , 2006, Bulletin of mathematical biology.

[25]  D. Earn,et al.  Global asymptotic coherence in discrete dynamical systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Watts,et al.  Multiscale, resurgent epidemics in a hierarchical metapopulation model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Molofsky,et al.  Extinction dynamics in experimental metapopulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A J McKane,et al.  Predator-prey cycles from resonant amplification of demographic stochasticity. , 2005, Physical review letters.

[29]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[30]  Jonathan M. Chase,et al.  The metacommunity concept: a framework for multi-scale community ecology , 2004 .

[31]  T. Miller,et al.  Dispersal Rates Affect Species Composition in Metacommunities of Sarracenia purpurea Inquilines , 2003, The American Naturalist.

[32]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[33]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[34]  R M Nisbet,et al.  Habitat structure and population persistence in an experimental community , 2001, Nature.

[35]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[36]  D. Earn,et al.  Coherence and conservation. , 2000, Science.

[37]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[38]  S. Solomon,et al.  The importance of being discrete: life always wins on the surface. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Bernd Blasius,et al.  Complex dynamics and phase synchronization in spatially extended ecological systems , 1999, Nature.

[40]  Jonathan A. Sherratt,et al.  Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave , 1998 .

[41]  M. Holyoak,et al.  Persistence of an Extinction-Prone Predator-Prey Interaction Through Metapopulation Dynamics , 1996 .

[42]  Simon A. Levin,et al.  Stochastic Spatial Models: A User's Guide to Ecological Applications , 1994 .

[43]  David Sloan Wilson,et al.  Complex Interactions in Metacommunities, with Implications for Biodiversity and Higher Levels of Selection , 1992 .

[44]  R. McMurtrie Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments , 1978 .

[45]  A Hastings,et al.  Spatial heterogeneity and the stability of predator-prey systems. , 1977, Theoretical population biology.

[46]  James H. Brown,et al.  Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction , 1977 .

[47]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[48]  Robert M. May,et al.  Stability in Randomly Fluctuating Versus Deterministic Environments , 1973, The American Naturalist.

[49]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[50]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[51]  G. Hardin,et al.  The Tragedy of the Commons , 1968, Green Planet Blues.

[52]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[53]  P. J. Hughesdon,et al.  The Struggle for Existence , 1927, Nature.

[54]  Vladislav B. Sotirović The Great Economic Depression in the Weimar Republic, 1929-1933 , 2014 .

[55]  J. Bascompte,et al.  Ecological networks : beyond food webs Ecological networks – beyond food webs , 2008 .

[56]  Mario Pineda-Krch,et al.  GillespieSSA : Implementing the Stochastic Simulation Algorithm in R , 2008 .

[57]  M. Wells,et al.  Variations and Fluctuations of the Number of Individuals in Animal Species living together , 2006 .

[58]  Mathew A. Leibold,et al.  Metacommunities: Spatial Dynamics and Ecological Communities , 2005 .

[59]  C.J.F. ter Braak,et al.  Application of Stochastic Patch Occupancy Models to Real Metapopulations , 2004 .

[60]  R. Veit,et al.  Partial Differential Equations in Ecology: Spatial Interactions and Population Dynamics , 1994 .

[61]  M. Gilpin,et al.  Metapopulation dynamics: a brief his-tory and conceptual domain , 1991 .

[62]  A. Shmida,et al.  Biological determinants of species diversity , 1985 .

[63]  J. Cowan,et al.  Some mathematical questions in biology , 1974 .

[64]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[65]  Alfred J. Lotka,et al.  CONTRIBUTION TO THE ANALYSIS OF MALARIA EPIDEMIOLOGY. V. SUMMARY , 1923 .

[66]  A. J. Lotka Contribution to the Analysis of Malaria Epidemiology. I. General Part , 1923 .

[67]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.