On Duality between Quantum Maps and Quantum States

We investigate the space of quantum operations, as well as the larger space of maps which are positive, but not completely positive. A constructive criterion for decomposability is presented. A certain class of unistochastic operations, determined by unitary matrices of extended dimensionality, is defined and analyzed. Using the concept of the dynamical matrix and the Jamiołkowski isomorphism we explore the relation between the set of quantum operations (dynamics) and the set of density matrices acting on an extended Hilbert space (kinematics). An analogous relation is established between the classical maps and an extended space of the discrete probability distributions.

[1]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[2]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[3]  棚橋 浩太郎,et al.  INDECOMPOSABLE POSITIVE MAPS IN MATRIX ALGEBRAS , 1988 .

[4]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[5]  Wai-Shing Tang On positive linear maps between matrix algebras , 1986 .

[6]  Man-Duen Choi Positive semidefinite biquadratic forms , 1975 .

[7]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[8]  C. Pillet Quantum Dynamical Systems , 2006 .

[9]  Kil-Chan Ha,et al.  Atomic positive linear maps in matrix algebras , 1998 .

[10]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[11]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[12]  Luigi Accardi,et al.  Nonrelativistic Quantum Mechanics as a Noncommutative Markof Process , 1976 .

[13]  Jun Tomiyama,et al.  Indecomposable Positive Maps in Matrix Algebras , 1988, Canadian Mathematical Bulletin.

[14]  Man-Duen Choi,et al.  Positive Linear Maps on C*-Algebras , 1972, Canadian Journal of Mathematics.

[15]  S. Woronowicz Nonextendible positive maps , 1976 .

[16]  A. Robertson AUTOMORPHISMS OF SPIN FACTORS AND THE DECOMPOSITION OF POSITIVE MAPS , 1983 .

[17]  H. Osaka Indecomposable positive maps in low dimensional matrix algebras , 1991 .

[18]  R. S. Ingarden Quantum information thermodynamics , 1962 .

[19]  S. Fei,et al.  Generalized reduction criterion for separability of quantum states (7 pages) , 2003, quant-ph/0312185.

[20]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[21]  W. Majewski,et al.  On a characterization of positive maps , 2001 .

[22]  M. Keyl Fundamentals of quantum information theory , 2002, quant-ph/0202122.

[23]  Andrzej Kossakowski,et al.  A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..

[24]  Andrzej Kossakowski,et al.  A Class of Linear Positive Maps in Matrix Algebras , 2003, Open Syst. Inf. Dyn..

[25]  N. Khaneja,et al.  Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.

[26]  David E. Evans Quantum dynamical semigroups, symmetry groups, and locality , 1984 .

[27]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[28]  E. Størmer Positive linear maps of operator algebras , 2012 .

[29]  P. Algoet,et al.  ONE-TO-ONE PARAMETRIZATION OF QUANTUM CHANNELS , 1999 .

[30]  Hong-Jong Kim,et al.  Indecomposable Extreme Positive Linear Maps in Matrix Algebras , 1994 .

[31]  H. Osaka A Class of Extremal Positive Maps in 3×3 Matrix Algebras , 1992 .

[32]  I. Chuang,et al.  Simulating quantum operations with mixed environments , 1998, quant-ph/9806095.

[33]  E. Sudarshan Structure and Parametrization of Stochastic Maps of Density Matrices , 2001, quant-ph/0109158.

[34]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[35]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[36]  Dirk Bouwmeester,et al.  The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.

[37]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[38]  Seung-Hyeok Kye,et al.  Generalized Choi maps in three-dimensional matrix algebra , 1992 .

[39]  Oliver Rudolph On the cross norm criterion for separability , 2003 .

[40]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[41]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[42]  R. Ingarden,et al.  Information Dynamics and Open Systems: Classical and Quantum Approach , 1997 .

[43]  W. Majewski Transformations between quantum states , 1975 .

[44]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[45]  A. Jamiołkowski An effective method of investigation of positive maps on the set of positive definite operators , 1974 .

[46]  Kalyan B. Sinha,et al.  Quantum Dynamical Semigroups , 1994 .

[47]  Kil-Chan Ha,et al.  Entangled states with positive partial transposes arising from indecomposable positive linear maps , 2003, quant-ph/0305005.

[48]  P. M. Mathews,et al.  STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .

[49]  E. Rieffel,et al.  Quantum operations that cannot be implemented using a small mixed environment , 2001, quant-ph/0111084.

[50]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[51]  Timothy F. Havel Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups , 2002, quant-ph/0201127.

[52]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[53]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[54]  K. Hammerer,et al.  Characterization of nonlocal gates , 2002 .

[55]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[56]  K. Kraus General state changes in quantum theory , 1971 .

[57]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[58]  Arvind,et al.  A generalized Pancharatnam geometric phase formula for three-level quantum systems , 1996, quant-ph/9605042.

[59]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[60]  P. Zanardi Entanglement of Quantum Evolutions , 2001 .

[61]  Seung-Hyeok Kye,et al.  DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .

[62]  Johan Åberg Subspace preserving completely positive maps , 2003 .

[63]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[64]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[65]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[66]  E. Størmer Positive linear maps of Cu * -algebras , 1974 .

[67]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[68]  D. Oi The Geometry of Single-Qubit Maps , 2001, quant-ph/0106035.

[69]  William Arveson,et al.  Subalgebras ofC*-algebras , 1969 .

[70]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[71]  Jaromir Fiurasek Structural physical approximations of unphysical maps and generalized quantum measurements , 2002 .

[72]  B. Terhal A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.

[73]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[74]  Oliver Rudolph Some properties of the computable cross-norm criterion for separability , 2002, quant-ph/0212047.

[75]  R. D. Hill,et al.  Completely positive and Hermitian-preserving linear transformations , 1981 .

[76]  Man-Duen Choi,et al.  Extremal positive semidefinite forms , 1977 .

[77]  F. Verstraete,et al.  On quantum channels , 2002, quant-ph/0202124.

[78]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[79]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[80]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.

[81]  G. Kimura The Bloch Vector for N-Level Systems , 2003, quant-ph/0301152.

[82]  O. Gühne,et al.  Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.

[83]  David A. Yopp,et al.  On completely copositive and decomposable linear transformations , 2000 .

[84]  W. Stinespring Positive functions on *-algebras , 1955 .

[85]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[86]  P. Arrighi,et al.  Conal representation of quantum states and non-trace-preserving quantum operations , 2002, quant-ph/0212062.

[87]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[88]  W. Arveson On subalgebras of $C^*$-algebras , 1969 .

[89]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[90]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[91]  S. Szarek,et al.  An Analysis of Completely-Positive Trace-Preserving Maps on 2x2 Matrices , 2000, quant-ph/0101003.

[92]  J. Cirac,et al.  Characterization of separable states and entanglement witnesses , 2000, quant-ph/0005112.

[93]  M. Sentís Quantum theory of open systems , 2002 .

[94]  Christopher King,et al.  Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.

[95]  E. Størmer DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .

[96]  L. Jakóbczyk,et al.  Geometry of Bloch vectors in two-qubit system , 2001 .

[97]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[98]  M. Lewenstein,et al.  Detection of entanglement with few local measurements , 2002, quant-ph/0205089.

[99]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[100]  Toshiyuki Takasaki,et al.  On the geometry of positive maps in matrix algebras , 1983 .

[101]  A. Kossakowski Remarks on positive maps of finite dimensional simple Jordan algebras , 2000 .

[102]  W. Majewski,et al.  On k-decomposability of positive maps , 2003, quant-ph/0411035.

[103]  A. O. Pittenger,et al.  Geometry of entanglement witnesses and local detection of entanglement , 2002, quant-ph/0207024.

[104]  M. Horodecki,et al.  Separability of mixed quantum states: linear contractions approach , 2002, quant-ph/0206008.

[105]  Seung-Hyeok Kye Facial structures for unital positive linear maps in the two-dimensional matrix algebra , 2003 .

[106]  P. Arrighi,et al.  On quantum operations as quantum states , 2003, quant-ph/0307024.

[107]  Jerzy Stryla Stochastic quantum dynamics , 2002 .

[108]  R. D. Hill,et al.  On the matrix reorderings Γ and ψ , 1985 .

[109]  L. J. Landau,et al.  On Birkhoff's theorem for doubly stochastic completely positive maps of matrix algebras , 1993 .

[110]  Seung-Hyeok Kye Facial Structures for the Positive Linear Maps Between Matrix Algebras , 1996, Canadian Mathematical Bulletin.

[111]  K. Wódkiewicz,et al.  Stochastic decoherence of qubits. , 2001, Optics express.

[112]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[113]  Armin Uhlmann On 1-qubit channels , 2001 .