Development of a thermodynamically consistent kinetic model for reactions in the solid oxide fuel cell

Abstract The parameter estimation using the traditional kinetic modeling of complex reaction systems will give incorrect results if the reaction mechanism contains a loop. In this work, a thermodynamically consistent kinetic model of the anodic electrochemical hydrogen oxidation reaction mechanism of a solid oxide fuel cell (SOFC) is formulated. An iterative algorithm for estimating the reaction rate constants using the thermodynamically consistent model formulation is developed. The kinetic parameters estimated using the proposed method gives a better fit to the experimental data. Using the concept of ‘Degree of rate control’ it is found that the surface reactions may have a greater role in deciding the overall rate. The proposed iterative parameter estimation algorithm developed in this work can also be adapted to other complex chemical and biochemical reaction networks for which the reaction rate constants need to be estimated using the experimental data.

[1]  Anja Bieberle The electrochemistry of solid oxide fuel cell anodes , 2000 .

[2]  Hai Wang,et al.  Thermodynamic consistency in microkinetic development of surface reaction mechanisms , 2003 .

[3]  Michel Boudart Kinetic generalities in catalysis , 2000 .

[4]  Amulya K. N. Reddy,et al.  Modern Electrochemistry: An Introduction to an Interdisciplinary Area , 1995 .

[5]  W. S. Hlavacek,et al.  On imposing detailed balance in complex reaction mechanisms. , 2006, Biophysical journal.

[6]  J. Ross Macdonald,et al.  Impedance spectroscopy , 2006, Annals of Biomedical Engineering.

[7]  Bernhard Maschke,et al.  Structured modeling for processes: A thermodynamical network theory , 2008, Comput. Chem. Eng..

[8]  Michel Boudart,et al.  The step that determines the rate of a single catalytic cycle , 1991 .

[9]  Peter J. Gawthrop,et al.  Estimation and control of mechatronic systems using sensitivity bond graphs , 2000 .

[10]  A. Smilde,et al.  Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution , 2000 .

[11]  Peter J. Gawthrop,et al.  Sensitivity bond graphs , 2000, J. Frankl. Inst..

[12]  James A. Dumesic,et al.  Analyses of Reaction Schemes Using De Donder Relations , 1999 .

[13]  Ludwig J. Gauckler,et al.  La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system , 1998 .

[14]  Andrzej Barański,et al.  On the usefulness of Campbell's concept of the rate-determining step , 1999 .

[15]  B. Ould Bouamama,et al.  Modelling and Simulation in Thermal and Chemical Engineering: A Bond Graph Approach , 1999 .

[16]  E. Gilles,et al.  Thermodynamic-Kinetic Modeling and Electrical Engineering , 2007 .

[17]  Periasamy Vijay,et al.  Bond graph model of a solid oxide fuel cell with a C-field for mixture of two gas species , 2008 .

[18]  Charles T. Campbell,et al.  Future Directions and Industrial Perspectives Micro- and macro-kinetics: Their relationship in heterogeneous catalysis , 1994 .

[19]  Ludwig J. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation , 1999 .

[20]  W. L. Holstein,et al.  Application of the De Donder Relation to the Mechanism of Catalytic Reactions , 1997 .

[22]  H. Qian,et al.  Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. , 2005, Biophysical chemistry.

[23]  Dmitry Yu. Murzin,et al.  Thermodynamic analysis of reaction schemes with empty routes , 2006 .

[24]  Remi Saisset,et al.  Bond Graph model of a PEM fuel cell , 2006 .

[25]  Charles T. Campbell,et al.  Finding the Rate-Determining Step in a Mechanism: Comparing DeDonder Relations with the “Degree of Rate Control” , 2001 .

[26]  L. Gauckler,et al.  State-space modeling of the anodic SOFC system Ni, H2–H2O∣YSZ , 2002 .

[27]  L. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation , 1999 .

[28]  Ilie Fishtik,et al.  De Donder Relations in Mechanistic and Kinetic Analysis of Heterogeneous Catalytic Reactions , 2001 .

[29]  Periasamy Vijay,et al.  On the rationale behind constant fuel utilization control of solid oxide fuel cells , 2009 .

[30]  W. Bessler,et al.  The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes , 2007 .

[31]  Laurent Lefèvre,et al.  Basis for bond-graph modeling in chemical engineering , 2007 .

[32]  M. Delgado,et al.  Parametric identification on bond graph models , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[33]  Periasamy Vijay,et al.  Constant Fuel Utilization Operation of a SOFC System: An Efficiency Viewpoint , 2010 .

[34]  M. Beato,et al.  How to impose microscopic reversibility in complex reaction mechanisms. , 2004, Biophysical journal.

[35]  Joseph D. Fehribach,et al.  A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions , 2005 .

[36]  W. Bessler,et al.  A new framework for physically based modeling of solid oxide fuel cells , 2007 .

[37]  Periasamy Vijay,et al.  A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell , 2009 .

[38]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[39]  E. Gilles,et al.  Thermodynamically feasible kinetic models of reaction networks. , 2007, Biophysical journal.

[40]  Srikanth Gopalan,et al.  Effect of Fuel Composition on Performance of Single-Step Cofired SOFCs , 2007 .

[41]  C. Jallut,et al.  A Multi‐Scale Dynamic Mechanistic Model for the Transient Analysis of PEFCs , 2007 .

[42]  F X Zhang,et al.  La 2 Zr 2 O 7 パイロクロアにおける圧力誘起無秩序化と異常格子膨張 , 2010 .