A candidate transporter allowing symbiotic dinoflagellates to feed their coral hosts

[1]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[2]  Fabien Burki,et al.  A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids , 2021, Nature Communications.

[3]  H. Gerós,et al.  Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles , 2021, Plant physiology.

[4]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[5]  G. McFadden,et al.  Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae) , 2019, Ecology and evolution.

[6]  G. McFadden,et al.  Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research , 2019, Symbiosis.

[7]  G. McFadden,et al.  Host Genotypic Effect on Algal Symbiosis Establishment in the Coral Model, the Anemone Exaiptasia diaphana, From the Great Barrier Reef , 2020, Frontiers in Marine Science.

[8]  W. Martin,et al.  Currency, Exchange, and Inheritance in the Evolution of Symbiosis. , 2019, Trends in microbiology.

[9]  Robert E. Jinkerson,et al.  Glucose-Induced Trophic Shift in an Endosymbiont Dinoflagellate with Physiological and Molecular Consequences1[OPEN] , 2017, Plant Physiology.

[10]  W. Frommer,et al.  Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  Huanming Yang,et al.  The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis , 2015, Science.

[12]  G. Mouille,et al.  Disruption of the Sugar Transporters AtSWEET11 and AtSWEET12 Affects Vascular Development and Freezing Tolerance in Arabidopsis. , 2015, Molecular plant.

[13]  Lily S. Cheung,et al.  Structure of a eukaryotic SWEET transporter in a homotrimeric complex , 2015, Nature.

[14]  W. Frommer,et al.  SWEETs, transporters for intracellular and intercellular sugar translocation. , 2015, Current opinion in plant biology.

[15]  Kerrie Mengersen,et al.  Species Richness on Coral Reefs and the Pursuit of Convergent Global Estimates , 2015, Current Biology.

[16]  Shiping Wang,et al.  Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. , 2013, Molecular plant.

[17]  Matthew S. Burriesci,et al.  Evidence that glucose is the major transferred metabolite in dinoflagellate–cnidarian symbiosis , 2012, Journal of Experimental Biology.

[18]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[19]  D. Allemand,et al.  Cell Biology of Cnidarian-Dinoflagellate Symbiosis , 2012, Microbiology and Molecular Reviews.

[20]  Alisdair R Fernie,et al.  Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport , 2012, Science.

[21]  W. Frommer,et al.  Sugar transporters for intercellular exchange and nutrition of pathogens , 2010, Nature.

[22]  A. Rath,et al.  Detergent binding explains anomalous SDS-PAGE migration of membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[23]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[24]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[25]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[26]  V. Weis,et al.  CHARACTERIZATION OF A SHORT FORM PERIDININ‐CHLOROPHYLL‐PROTEIN (PCP) cDNA AND PROTEIN FROM THE SYMBIOTIC DINOFLAGELLATE SYMBIODINIUM MUSCATINEI (DINOPHYCEAE) FROM THE SEA ANEMONE ANTHOPLEURA ELEGANTISSIMA (CNIDARIA) 1 , 2002 .

[27]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[28]  C. Hollenberg,et al.  Concurrent knock‐out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae , 1999, FEBS letters.

[29]  T. Maruyama,et al.  Zooxanthellae release glucose in the tissue of a giant clam, Tridacna crocea , 1999 .

[30]  R. Artero,et al.  saliva, a new Drosophila gene expressed in the embryonic salivary glands with homologues in plants and vertebrates , 1998, Mechanisms of Development.

[31]  A. Douglas,et al.  Nutrients, Signals, and Photosynthate Release by Symbiotic Algae (The Impact of Taurine on the Dinoflagellate Alga Symbiodinium from the Sea Anemone Aiptasia pulchella) , 1997, Plant physiology.

[32]  W. Frommer,et al.  NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis , 1995, FEBS letters.

[33]  R. Gates,et al.  Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. Fitt,et al.  A method for temporal measurement of hemolymph composition in the giant clam symbiosis and its application to glucose and glycerol levels during a diel cycle , 1993 .

[35]  R. Schiestl,et al.  Applications of high efficiency lithium acetate transformation of intact yeast cells using single‐stranded nucleic acids as carrier , 1991, Yeast.

[36]  O. Hoegh‐Guldberg,et al.  Host-Zooxanthella Interactions in Four Temperate Marine Invertebrate Symbioses: Assessment of Effect of Host Extracts on Symbionts. , 1990, The Biological bulletin.

[37]  L. Muscatine The role of symbiotic algae in carbon and energy flux in reef corals , 1990 .

[38]  I. Chet,et al.  Chemical Detection of Microbial Prey by Bacterial Predators , 1971, Journal of bacteriology.

[39]  L. Muscatine Glycerol Excretion by Symbiotic Algae from Corals and Tridacna and Its Control by the Host , 1967, Science.

[40]  L. Muscatine,et al.  DIRECT EVIDENCE FOR THE TRANSFER OF MATERIALS FROM SYMBIOTIC ALGAE TO THE TISSUES OF A COELENTERATE. , 1958, Proceedings of the National Academy of Sciences of the United States of America.