Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

Abstract The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window ( + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5  S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C -rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

[1]  Bing Sun,et al.  Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations. , 2016, Physical chemistry chemical physics : PCCP.

[2]  A. Minor,et al.  Morphology-conductivity relationship in crystalline and amorphous sequence-defined peptoid block copolymer electrolytes. , 2014, Journal of the American Chemical Society.

[3]  Bruno Scrosati,et al.  Impedance Spectroscopy Study of PEO‐Based Nanocomposite Polymer Electrolytes , 2000 .

[4]  T. Richardson,et al.  Supramolecular order in new polymer electrolytes , 1998 .

[5]  Federico Bella,et al.  Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries , 2016 .

[6]  Stefano Passerini,et al.  Room temperature lithium polymer batteries based on ionic liquids , 2010 .

[7]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[8]  P. Basak,et al.  Polymer-nanocomposite brush-like architectures as an all-solid electrolyte matrix. , 2014, ACS nano.

[9]  Y. Tominaga,et al.  Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes , 2016 .

[10]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[11]  Zhiqiang Zhu,et al.  All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. , 2014, Journal of the American Chemical Society.

[12]  D. Shriver,et al.  Highly conductive polymer electrolytes containing rigid polymers , 1998 .

[13]  Y. Tominaga,et al.  A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature , 2016 .

[14]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[15]  Bing Sun,et al.  Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries , 2015 .

[16]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[17]  P. Ajayan,et al.  High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. , 2012, Nano letters.

[18]  J. Liu,et al.  An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method , 2015 .

[19]  Daniel Brandell,et al.  High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature , 2015 .

[20]  Y. Chen-Yang,et al.  Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery , 2009 .

[21]  J. F. Vélez,et al.  Covalent silica-PEO-LiTFSI hybrid solid electrolytes via sol-gel for Li-ion battery applications , 2016 .

[22]  J. R. Stevens,et al.  Effect of Salt Concentration on the Conductivity of PEO-Based Composite Polymeric Electrolytes , 1998 .

[23]  S. Chung,et al.  Uniaxial Stress Effects in Poly ( ethylene oxide ) ­ LiI Polymer Electrolyte Film: A 7Li Nuclear Magnetic Resonance Study , 1999 .

[24]  M. Silva,et al.  Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate) , 2001 .

[25]  Wensheng Yang,et al.  Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries , 2010 .

[26]  Federico Bella,et al.  Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate , 2015, Journal of Solid State Electrochemistry.

[27]  M. Winter,et al.  Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid , 2008 .

[28]  E. Kramer,et al.  Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries , 2013 .

[29]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[30]  Ravi Gupta,et al.  Transport properties of a new Li+ ion-conducting ormolyte: (SiO2–PEG)–LiCF3SO3 , 2002 .

[31]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[32]  A. Hexemer,et al.  Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions , 2009 .

[33]  B. Scrosati,et al.  Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries , 2003 .

[34]  Kenta Yamazaki,et al.  Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. , 2014, Chemical communications.

[35]  F. Bella,et al.  Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries , 2016, Scientific Reports.

[36]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[37]  Xinhong Zhou,et al.  Safety‐Reinforced Poly(Propylene Carbonate)‐Based All‐Solid‐State Polymer Electrolyte for Ambient‐Temperature Solid Polymer Lithium Batteries , 2015 .

[38]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[39]  Feng Wu,et al.  A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries , 2016 .

[40]  Yefeng Yao,et al.  Transferring lithium ions in nanochannels: a PEO/Li⁺ solid polymer electrolyte design. , 2014, Angewandte Chemie.

[41]  M. Ratner,et al.  Ionic conductivity in poly(diethylene glycol-carbonate)/sodium triflate complexes , 1997 .

[42]  O. Borodin,et al.  Effect of ion distribution on conductivity of block copolymer electrolytes. , 2009, Nano letters.

[43]  G. Cui,et al.  Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries , 2013 .

[44]  H. Kricheldorf,et al.  Polymers of carbonic acid, 21. Ring‐opening polymerization of cyclobis(diethylene glycol carbonate) by means of BuSnCl3, SnOct2 or Bu2SnO as catalysts , 1997 .

[45]  Koichi Yamada,et al.  Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes , 1999 .

[46]  Bruno Scrosati,et al.  Progress in lithium polymer battery R&D , 2001 .

[47]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[48]  T. Gustafsson,et al.  Electrodeposition as a Tool for 3D Microbattery Fabrication , 2011 .

[49]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[50]  A. Stephan,et al.  Nanocomposite Polymer Electrolytes For Lithium Batteries , 2009 .

[51]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[52]  Laurent Depre,et al.  Inorganic-organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods , 1998 .

[53]  Bing Sun,et al.  Polycarbonate-based Solid Polymer Electrolytes for Li-ion Batteries , 2014 .

[54]  T. Itoh,et al.  Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate , 2013 .

[55]  Federico Bella,et al.  Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries , 2016 .

[56]  B. Scrosati,et al.  Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes , 2001 .

[57]  Moon Jeong Park,et al.  Enhanced Performance in Lithium–Polymer Batteries Using Surface-Functionalized Si Nanoparticle Anodes and Self-Assembled Block Copolymer Electrolytes , 2011 .

[58]  J. Rolland,et al.  Single-ion diblock copolymers for solid-state polymer electrolytes , 2015 .

[59]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.