Studies on Stewart platform manipulator: A review

This paper presents a compilation of previous studies on the Stewart platform, which is a class of six degree of freedom parallel manipulators. The abstraction of a parallel manipulator is appropriated for the entire class of it. The paper focuses on the studies in the different fields which are closely checked to determine the direction of research and identify the solved problem areas. A significant investigation has been presented to discuss the existing methods for the analysis of the Stewart platform manipulator due to their unique applications. Studies on analysis and design of the Stewart platform manipulator using flexible joints are included. Modeling and analysis of parallel manipulators by Matlab SimMechanics environment are also highlighted.

[1]  H. Ulbrich,et al.  Modelling and online computation of the dynamics of a parallel kinematic with six degrees-of-freedom , 2003 .

[2]  E.H. Anderson,et al.  Satellite ultraquiet isolation technology experiment (SUITE) , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[3]  André Preumont,et al.  A six degrees of freedom active isolator based on stewart platform for space applications , 2005 .

[4]  K. Srinivasan,et al.  Kinematic and dynamic analysis of Stewart platform-based machine tool structures , 2003, Robotica.

[5]  Jeha Ryu,et al.  Orientation workspace analysis of 6-DOF parallel manipulators , 1999 .

[6]  Wei Wang,et al.  Characteristics of Baicalin Synergy with Penicillin or Notopterygium Ethanol Extracts Against Staphylococcus aureus , 2006 .

[7]  P. Xirouchakis,et al.  Dynamics analysis of a 3-DOF parallel manipulator with R–P–S joint structure , 2007 .

[8]  Kuang-Chao Fan,et al.  Identification of strut and assembly errors of a 3-PRS serial-parallel machine tool , 2004 .

[9]  Mahdi Agheli,et al.  Identifying the Kinematic Parameters of Hexapod Machine Tool , 2009 .

[10]  Jean-Pierre Merlet,et al.  Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis , 2004, Int. J. Robotics Res..

[11]  Kazem Kazerounian,et al.  A Real Parameter Continuation Method for Complete Solution of Forward Position Analysis of the General Stewart , 2002 .

[12]  S. Staicu,et al.  A novel dynamic modelling approach for parallel mechanisms analysis , 2008 .

[13]  Jae-Bok Song,et al.  Workspace and force-moment transmission of a variable arm type parallel manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[14]  N. Gindy,et al.  Error reduction for an inertial-sensor-based dynamic parallel kinematic machine positioning system , 2003 .

[15]  Wilfrid Perruquetti,et al.  Dynamic modeling of a parallel robot. Application to a surgical simulator , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[16]  L. Tsai Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work , 2000 .

[17]  Gexue Ren,et al.  The multi-body system modelling of the Gough–Stewart platform for vibration control , 2004 .

[18]  Ashitava Ghosal,et al.  Singularity and controllability analysis of parallel manipulators and closed-loop mechanisms , 2000 .

[19]  Weishan Chen,et al.  Extreme configuration bifurcation analysis and link safety length of Stewart platform , 2008 .

[20]  Liu Lei,et al.  Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms via H∞ and μ Synthesis , 2008 .

[21]  Wisama Khalil,et al.  Inverse and direct dynamic modeling of Gough-Stewart robots , 2004, IEEE Transactions on Robotics.

[22]  Chun-Ta Chen,et al.  A Lagrangian Formulation in Terms of Quasi-Coordinates for the Inverse Dynamics of the General 6-6 Stewart Platform Manipulator , 2003 .

[23]  John McPhee,et al.  Inverse dynamic analysis of parallel manipulators with full mobility , 2003 .

[24]  Ashitava Ghosal,et al.  A force–torque sensor based on a Stewart Platform in a near-singular configuration , 2004 .

[25]  Ahmed Abu Hanieh,et al.  Active isolation and damping of vibrations via Stewart platform , 2003 .

[26]  A. Lopes,et al.  Dynamic modeling of a Stewart platform using the generalized momentum approach , 2009 .

[27]  Wisama Khalil,et al.  Dynamic Modeling of Robots Using Newton-Euler Formulation , 2010, ICINCO.

[28]  B. Heimann,et al.  High Efficient Dynamics Calculation Approach for Computed-Force Control of Robots with Parallel Structures , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  John C. Ziegert,et al.  Uncertainty propagation in calibration of parallel kinematic machines , 1999 .

[30]  Bodo Heimann,et al.  Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism , 2009 .

[31]  Hui Zhao,et al.  New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs , 2002 .

[32]  C. Gosselin,et al.  Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform , 2009 .

[33]  W. G. Price,et al.  Passive–active vibration isolation systems to produce zero or infinite dynamic modulus: theoretical and conceptual design strategies , 2005 .

[34]  Wei Dong,et al.  A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments , 2014, IEEE Transactions on Robotics.

[35]  Wisama Khalil,et al.  A novel solution for the dynamic modeling of Gough-Stewart manipulators , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[36]  J. Merlet,et al.  A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot. , 2001 .

[37]  Won-jong Kim,et al.  Modeling and Multivariable Control Design Methodologies for Hexapod-Based Satellite Vibration Isolation , 2005 .

[38]  Boris Mayer St-Onge,et al.  Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform , 2006 .

[39]  Manfred Husty,et al.  Workspace Analysis of Stewart-Gough-Type Parallel Manipulators , 2006 .

[40]  Bodo Heimann,et al.  Adapted Time-Optimal Trajectory Planning for Parallel Manipulators with Full Dynamic Modelling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[41]  James D. Turner,et al.  Dynamic Analysis and Control of a Stewart Platform Using A Novel Automatic Dierentiation Method , 2006 .

[42]  Han Sung Kim Kinematic Calibration of a Cartesian Parallel Manipulator , 2005 .

[43]  P. M. George,et al.  Parallel Manipulators Applications—A Survey , 2012 .

[44]  Dae-Gab Gweon,et al.  Error analysis of a flexure hinge mechanism induced by machining imperfection , 1997 .

[45]  Luc Rolland,et al.  Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator , 2005, Adv. Robotics.

[46]  Tae-Young Lee,et al.  Algebraic elimination-based real-time forward kinematics of the 6-6 Stewart platform with planar base and platform , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[47]  Ren Gexue,et al.  On vibration control with Stewart parallel mechanism , 2004 .

[48]  M. Bergamasco,et al.  Dynamics of parallel manipulators by means of screw theory , 2003 .

[49]  Yongsheng Zhao,et al.  Analysis of a Pre-stressed Six-component Force/Torque Sensor Based on Stewart Platform , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[50]  Meng Gao,et al.  Estimates of Identification Result Disturbances in Parallel Mechanism Calibration * * Supported by the National Natural Science Foundation of China (No. 50305016) and the National Key Basic Research and Development (973) Program of China (No. 2004CB318007) , 2006 .

[51]  T. Březina,et al.  NI LabView - Matlab SimMechanics Stewart platform design , 2008 .

[52]  Xin-Jun Liu,et al.  Inverse dynamics of the HALF parallel manipulator with revolute actuators , 2007 .

[53]  Lluís Ros,et al.  Planning Singularity-Free Force-Feasible Paths on the Stewart Platform , 2012, ARK.

[54]  Yangmin Li,et al.  A general dynamics and control model of a class of multi-DOF manipulators for active vibration control , 2011 .

[55]  Brij N. Agrawal,et al.  Payload Pointing and Active Vibration Isolation Using Hexapod Platforms , 2003 .

[56]  Jae-Bok Song,et al.  Error Model and Accuracy Analysis of a Cubic Parallel Device , 2001 .

[57]  D. Stewart A Platform with Six Degrees of Freedom , 1965 .

[58]  Tae-Sung Kim,et al.  Study on observability of a parallel-typed machining center using a single planar table and digital indicators , 2006 .

[59]  J. Paros How to design flexure hinges , 1965 .

[60]  Wei Xu,et al.  Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations , 1996 .

[61]  I. Bonev,et al.  A new method for solving the direct kinematics of general 6-6 Stewart Platforms using three linear extra sensors , 2000 .

[62]  Tohru Ifukube,et al.  Kinematics and dynamics of a 6 degree-of-freedom fully parallel manipulator with elastic joints , 2003 .

[63]  C. Gosselin,et al.  Advantages of the modified Euler angles in the design and control of PKMs , 2002 .

[64]  André Preumont,et al.  A six-axis single-stage active vibration isolator based on Stewart platform , 2005 .

[65]  Guanfeng Liu,et al.  On the dynamics of parallel manipulators , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[66]  Yangmin Li,et al.  Modeling and Control Analysis of a 3-PUPU Dual Compliant Parallel Manipulator for Micro Positioning and Active Vibration Isolation , 2012 .

[67]  Shimin Wei,et al.  Closed-form forward kinematics for a symmetrical 6-6 Stewart platform using algebraic elimination , 2010 .

[68]  Alon Wolf,et al.  Screw theory tools for the synthesis of the geometry of a parallel robot for a given instantaneous task , 2006 .

[69]  Clément Gosselin,et al.  Evaluation and Representation of the Theoretical Orientation Workspace of the Gough–Stewart Platform , 2009 .

[70]  A. K. Mallik,et al.  Dynamic stability index and vibration analysis of a flexible Stewart platform , 2007 .

[71]  John E. McInroy,et al.  Design and control of flexure jointed hexapods , 2000, IEEE Trans. Robotics Autom..

[72]  Wisama Khalil,et al.  General Solution for the Dynamic Modeling of Parallel Robots , 2007, J. Intell. Robotic Syst..

[73]  Yuji Ishino,et al.  A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism , 2010 .

[74]  J. Shim,et al.  Improved dialytic elimination algorithm for the forward kinematics of the general Stewart–Gough platform , 2003 .

[75]  Haibo Chen,et al.  Improved active vibration isolation systems , 2007 .

[76]  Stefan Staicu,et al.  Dynamics analysis of the Star parallel manipulator , 2009, Robotics Auton. Syst..

[77]  Mark Campbell,et al.  Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors , 2002 .

[78]  Boris Mayer St-Onge,et al.  Singularity Analysis and Representation of the General Gough-Stewart Platform , 2000, Int. J. Robotics Res..

[79]  Won-jong Kim,et al.  Modeling and 6-DOF vibration reduction for a spacecraft with precision sensors , 2003, Proceedings of the 2003 American Control Conference, 2003..

[80]  Sandipan Bandyopadhyay,et al.  Singular Manifold of the General Hexagonal Stewart Platform Manipulator , 2012, ARK.

[81]  S. K. Mustafa,et al.  Numerical Orientation Workspace Analysis with Different Parameterization Methods , 2006, 2006 IEEE Conference on Robotics, Automation and Mechatronics.

[82]  Huibin Xu,et al.  Giant magnetostrictive actuators for active vibration control , 2004 .

[83]  J. McPhee,et al.  Dynamics of Flexible Multibody Systems Using Virtual Work and Linear Graph Theory , 2000 .

[84]  Baokun Li,et al.  Singularity kinematics principle and position-singularity analyses of the 6-3 Stewart-Gough parallel manipulators , 2011 .

[85]  James K. Mills,et al.  FEM dynamic model for active vibration control of flexible linkages and its application to a planar parallel manipulator , 2005 .

[86]  Lluís Ros,et al.  A linear relaxation method for computing workspace slices of the Stewart platform , 2013 .

[87]  Yung Ting,et al.  Measurement and calibration for Stewart micromanipulation system , 2007 .

[88]  Fengfeng Xi,et al.  Inverse dynamics of hexapods using the natural orthogonal complement method , 2002 .

[89]  Jun Wu,et al.  Simplified strategy of the dynamic model of a 6-UPS parallel kinematic machine for real-time control , 2007 .

[90]  Bruno Siciliano,et al.  On the Dynamics of a Class of Parallel Robots , 2000 .

[91]  Bhaskar Dasgupta,et al.  The Stewart platform manipulator: a review , 2000 .

[92]  Won-jong Kim,et al.  System Identification and Multivariable Control Design for a Satellite UltraQuiet Isolation Technology Experiment (SUITE) , 2004, Eur. J. Control.

[93]  Bhaskar Dasgupta,et al.  A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator , 1998 .

[94]  C. Gosselin,et al.  A Vector Expression of the Constant-Orientation Singularity Locus of the Gough–Stewart Platform , 2013 .

[95]  Dimiter Zlatanov,et al.  Numerical computation of manipulator singularities , 2012, 2012 IEEE International Conference on Robotics and Automation.

[96]  Bhaskar Dasgupta,et al.  Design and development of a Stewart platform based force– torque sensor , 2001 .

[97]  Ming-Hwei Perng,et al.  Self-calibration of a general hexapod manipulator with enhanced precision in 5-DOF motions , 2004 .

[98]  K. Y. Tsai,et al.  Determining the compatible orientation workspace of Stewart–Gough parallel manipulators , 2006 .

[99]  Moshe Shoham,et al.  Application of Grassmann—Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities , 2009, Int. J. Robotics Res..

[100]  H B Guo,et al.  Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator , 2006 .

[101]  A. Mallik,et al.  Variational approach for singularity-free path-planning of parallel manipulators , 2003 .

[102]  Raffaele Di Gregorio,et al.  Singularity-locus expression of a class of parallel mechanisms , 2002, Robotica.

[103]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[104]  J. Gallardo-Alvarado,et al.  Kinematics of an asymmetrical three-legged parallel manipulator by means of the screw theory , 2010 .

[105]  A. Ghosal,et al.  Analysis of configuration space singularities of closed-loop mechanisms and parallel manipulators , 2004 .

[106]  Ming-Hwei Perng,et al.  Forward Kinematics of a General Fully Parallel Manipulator with Auxiliary Sensors , 2001, Int. J. Robotics Res..

[107]  W. Cleghorn,et al.  Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links , 2005 .

[108]  António M. Lopes A COMPUTATIONAL EFFICIENT APPROACH TO THE DYNAMIC MODELING OF 6-DOF PARALLEL MANIPULATORS , 2008 .

[109]  Junwei Han,et al.  Modeling and simulation of spatial 6-DOF parallel robots using Simulink and SimMechanics , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[110]  Cao Dengqing,et al.  Design and Experimental Study of a VCM-Based Stewart Parallel Mechanism Used for Active Vibration Isolation , 2015 .

[111]  Hui Zhou,et al.  Position-singularity Characterization of a Special Class of the Stewart Parallel Mechanisms , 2013, Int. J. Robotics Autom..

[112]  Nicolae Lobontiu,et al.  Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations , 2002 .

[113]  M. Mahboubkhah,et al.  A comprehensive study on the free vibration of machine tools’ hexapod table , 2009 .

[114]  J Gallardo-Alvarado,et al.  Kinematics of a Hybrid Manipulator by Means of Screw Theory , 2005 .

[115]  Chul-Goo Kang Closed-form force sensing of a 6-axis force transducer based on the Stewart platform , 2001 .

[116]  Eric T. Wolbrecht,et al.  Geometric Design of Symmetric 3-RRS Constrained Parallel Platforms , 2004 .

[117]  Mark Campbell,et al.  Sensors and control of a space-based six-axis vibration isolation system , 2004 .

[118]  M. Mahboubkhah,et al.  Vibration analysis of machine tool’s hexapod table , 2008 .

[119]  E. Castillo-Castaneda,et al.  Improving path accuracy of a crank-type 6-dof parallel mechanism by stiction compensation , 2008 .

[120]  Jian S. Dai,et al.  Forward displacement analysis of a new 1CCC–5SPS parallel mechanism using Gröbner theory , 2009 .

[121]  Stuart T. Smith,et al.  ELLIPTICAL FLEXURE HINGES , 1997 .

[122]  Nicolae Lobontiu,et al.  Corner-Filleted Flexure Hinges , 2001 .

[123]  Karol Miller,et al.  Optimal Design and Modeling of Spatial Parallel Manipulators , 2004, Int. J. Robotics Res..

[124]  Wei Liu,et al.  Measurement method of six-axis load sharing based on the Stewart platform , 2010 .