Development of high speed low noise InAs electron avalanche photodiodes
暂无分享,去创建一个
[1] H. Ehrenreich,et al. Impact ionization enhancements in AlxGa1−xSb avalanche photodiodes , 2000 .
[2] G. Lucovsky,et al. The frequency response of avalanching photodiodes , 1966 .
[3] M. Hopkinson,et al. Avalanche Multiplication in InAlAs , 2007, IEEE Transactions on Electron Devices.
[4] Chee Hing Tan,et al. Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end , 2006 .
[5] Yajun Wei,et al. Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes , 2004 .
[6] M. J. Deen,et al. Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling , 2001 .
[7] D. G. Knight,et al. Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes , 1994, IEEE Photonics Technology Letters.
[8] P. Norton. HgCdTe Infrared Detectors , 2002 .
[9] G. Lucovsky,et al. Avalanche multiplication in InAs photodiodes , 1965 .
[10] R. Baertsch. Noise and Multiplication Measurements in InSb Avalanche Photodiodes , 1967 .
[12] Electrical characteristics of diffused InAs p-n junctions , 1961 .
[13] F. Capasso,et al. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.
[14] Arezou Khoshakhlagh,et al. Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation , 2010 .
[15] John Marciniec,et al. HgCdTe MWIR Back-Illuminated Electron-Initiated Avalanche Photodiode Arrays , 2007 .
[16] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[17] A. Rogalski. Infrared detectors: status and trends , 2003 .
[18] A. Holmes,et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber , 2003 .
[19] Andrew R. J. Marshall,et al. Fabrication of InAs photodiodes with reduced surface leakage current , 2007, SPIE Security + Defence.
[20] J. David,et al. Avalanche multiplication in submicron AlxGa1−xAs/GaAs multilayer structures , 2000 .
[21] W. C. Johnson,et al. Use of a Schottky barrier to measure impact ionization coefficients in semiconductors , 1973 .
[22] John P. R. David,et al. Avalanche noise characteristics of thin GaAs structures with distributed carrier generation [APDs] , 2000 .
[23] James R. Chelikowsky,et al. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .
[24] Chee Hing Tan,et al. Temperature Dependence of Avalanche Breakdown in InP and InAlAs , 2010, IEEE Journal of Quantum Electronics.
[25] John P. R. David,et al. Electron multiplication in AlxGa1−xAs/GaAs heterostructures , 1997 .
[26] A. Krier,et al. InAsSb/InAsSbP light emitting diodes for the detection of CO and CO2 at room temperature , 1999 .
[27] B. Ridley. Lucky-drift mechanism for impact ionisation in semiconductors , 1983 .
[29] A. Krier,et al. Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 μm , 2000 .
[30] Sethumadhavan Chandrasekhar,et al. Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .
[31] J. David,et al. Impact ionization probabilities as functions of two-dimensional space and time , 2001 .
[32] George H. Rieke. Detection of Light , 1994 .
[33] R. B. Emmons,et al. Avalanche‐Photodiode Frequency Response , 1967 .
[34] S. Forrest,et al. In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling , 1980 .
[35] Joe C. Campbell,et al. Performance of thin separate absorption, charge, and multiplication avalanche photodiodes , 1998 .
[36] J. F. Chen,et al. Molecular beam epitaxy growth of InAs-AlSb-GaSb interband tunneling diodes , 1993 .
[37] Joe C. Campbell,et al. Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .
[38] C. Chia,et al. Impact ionization in AlxGa1−xAs/GaAs single heterostructures , 1998 .
[39] J. David,et al. A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .
[40] Chee Hing Tan,et al. Extremely Low Excess Noise in InAs Electron Avalanche Photodiodes , 2009, IEEE Photonics Technology Letters.
[41] J. Bude,et al. Thresholds of impact ionization in semiconductors , 1992 .
[42] M. Shaw,et al. Improving the process capability of SU-8 , 2003 .
[43] Undoped InSb Schottky detector for gamma-ray measurements , 2005, IEEE Transactions on Nuclear Science.
[44] T Ashley,et al. Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques , 1991 .
[45] J. Bowers,et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .
[46] Joe C. Campbell,et al. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .
[47] E. Derouin,et al. 240-GHz Gain-Bandwidth Product Back-Side Illuminated AlInAs Avalanche Photodiodes , 2010, IEEE Photonics Technology Letters.
[48] Tai-Ping Sun,et al. Room temperature unpassivated InAs p-i-n photodetectors grown by molecular beam epitaxy , 1997 .
[49] R. Engelbrecht,et al. DIGEST of TECHNICAL PAPERS , 1959 .
[50] L. Piper,et al. Electron depletion at InAs free surfaces : Doping-induced acceptorlike gap states , 2006 .
[51] John P. R. David,et al. Temperature dependence of impact ionization in GaAs , 2003 .
[52] John Marciniec,et al. HgCdTe MWIR Back-Illuminated Electron-Initiated Avalanche Photodiode Arrays , 2006, SPIE Optics + Photonics.
[53] Chee Hing Tan,et al. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit. , 2011, Optics express.
[54] J. David,et al. Temperature dependence of electron impact ionization in In0.53Ga0.47As , 2004 .
[55] Joe C. Campbell,et al. Chapter 5 Phototransistors for Lightwave Communications , 1985 .
[56] W. Powazinik,et al. Measurement of hole velocity in n-type InGaAs , 1987 .
[57] D. Herbert,et al. Self-consistent 2-D Monte Carlo Simulations of InSb APD , 2005, IEEE Transactions on Electron Devices.
[58] J.C. Campbell,et al. Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.
[59] Bahaa E. A. Saleh,et al. Effect of dead space on the excess noise factor and time response of avalanche photodiodes , 1990 .
[60] C. Tan,et al. Avalanche Multiplication and Excess Noise in InAs Electron Avalanche Photodiodes at 77 K , 2011, IEEE Journal of Quantum Electronics.
[61] Y. Amamiya,et al. An ultra high speed waveguide avalanche photodiode for 40-Gb/s optical receiver , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).
[62] D. Tsui. Observation of Surface Bound State and Two-Dimensional Energy Band by Electron Tunneling , 1970 .
[63] M. J. Deen,et al. Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1995 .
[64] J. David,et al. A simple model to determine multiplication and noise in avalanche photodiodes , 1998 .
[65] R. Joshi,et al. Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs , 2002 .
[66] John P. R. David,et al. Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes , 2008 .
[67] S. Krishna,et al. Low-Noise Mid-Wavelength Infrared Avalanche Photodiodes , 2008 .
[68] Chee Hing Tan,et al. Temperature Dependence of Leakage Current in InAs Avalanche Photodiodes , 2011, IEEE Journal of Quantum Electronics.
[69] Haruhiko Kuwatsuka,et al. Large multiplication-bandwidth products in APDs with a thin InP multiplication layer , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..
[70] M. Kinch,et al. The HgCdTe electron avalanche photodiode , 2006, 2006 Digest of the LEOS Summer Topical Meetings.
[71] Gérard Destefanis,et al. Gain and Dark Current Characteristics of Planar HgCdTe Avalanche Photo Diodes , 2007 .
[72] Menachem Nathan,et al. Suppression of leakage currents in InAsSb MWIR photodiodes by chemical treatment and illumination , 2010 .
[73] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[74] Mitsuaki Yano,et al. Molecular Beam Epitaxial Growth of InAs , 1977 .
[75] John E. Bowers,et al. High gain-bandwidth-product silicon heterointerface photodetector , 1997 .
[76] J. Kim. InSb MIS structures for infrared imaging devices , 1973 .
[77] C. Tan,et al. Material Considerations for Avalanche Photodiodes , 2008, IEEE Journal of Selected Topics in Quantum Electronics.
[78] J. David,et al. A simple model for avalanche multiplication including deadspace effects , 1999 .
[79] Gerald B. Stringfellow,et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy , 1990 .
[80] Antoni Rogalski,et al. HgCdTe infrared detector material: history, status and outlook , 2005 .
[81] T. Nakata,et al. High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes , 1999 .
[82] D. Wolski,et al. Comparative study of avalanche photodiodes with different structures in scintillation detection , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).
[83] K. Ng,et al. The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.
[84] Bahaa E. A. Saleh,et al. Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.
[85] Christine M. Maziar,et al. Design considerations for high performance avalanche photodiode multiplication layers , 1994 .
[86] Yimin Kang,et al. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product. , 2009, Optics express.
[87] Anthony Krier,et al. A room temperature photovoltaic detector for the mid-infrared (1.8-3.4 m) wavelength region , 1998 .
[88] J. David,et al. The merits and limitations of local impact ionization theory [APDs] , 2000 .
[90] Jonathon T. Olesberg,et al. High detectivity GaInAsSb pin infrared photodetector for blood glucose sensing , 2000 .
[91] G. E. Stillman,et al. Chapter 5 Avalanche Photodiodes , 1977 .
[92] A. Rogalski. Infrared detectors: an overview , 2002 .
[93] R. Mcintyre. Multiplication noise in uniform avalanche diodes , 1966 .
[94] H. Kim,et al. Reliable, high gain-bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb/s receivers , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.
[95] G. Stareev. Formation of extremely low resistance Ti/Pt/Au ohmic contacts to p‐GaAs , 1993 .
[96] M. Achour. Free-space optics wavelength selection: 10 µm versus shorter wavelengths[Invited] , 2003 .
[97] J. David,et al. Optimization of InP APDs for High-Speed Lightwave Systems , 2008, Journal of Lightwave Technology.
[98] L. Coldren,et al. Recent developments in avalanche photodiodes , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).
[99] Chee Hing Tan,et al. Impact Ionization in InAs Electron Avalanche Photodiodes , 2010, IEEE Transactions on Electron Devices.
[100] Jeremy Copley,et al. A low-noise laser-gated imaging system for long-range target identification , 2004, SPIE Defense + Commercial Sensing.
[101] J. Rothman,et al. High-Operating-Temperature HgCdTe Avalanche Photodiodes , 2009 .
[102] Sadao Adachi,et al. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y , 1989 .
[103] F. Xia,et al. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.