Development of high speed low noise InAs electron avalanche photodiodes

[1]  H. Ehrenreich,et al.  Impact ionization enhancements in AlxGa1−xSb avalanche photodiodes , 2000 .

[2]  G. Lucovsky,et al.  The frequency response of avalanching photodiodes , 1966 .

[3]  M. Hopkinson,et al.  Avalanche Multiplication in InAlAs , 2007, IEEE Transactions on Electron Devices.

[4]  Chee Hing Tan,et al.  Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end , 2006 .

[5]  Yajun Wei,et al.  Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes , 2004 .

[6]  M. J. Deen,et al.  Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling , 2001 .

[7]  D. G. Knight,et al.  Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes , 1994, IEEE Photonics Technology Letters.

[8]  P. Norton HgCdTe Infrared Detectors , 2002 .

[9]  G. Lucovsky,et al.  Avalanche multiplication in InAs photodiodes , 1965 .

[10]  R. Baertsch Noise and Multiplication Measurements in InSb Avalanche Photodiodes , 1967 .

[12]  Electrical characteristics of diffused InAs p-n junctions , 1961 .

[13]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[14]  Arezou Khoshakhlagh,et al.  Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation , 2010 .

[15]  John Marciniec,et al.  HgCdTe MWIR Back-Illuminated Electron-Initiated Avalanche Photodiode Arrays , 2007 .

[16]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[17]  A. Rogalski Infrared detectors: status and trends , 2003 .

[18]  A. Holmes,et al.  InGaAs/InAlAs avalanche photodiode with undepleted absorber , 2003 .

[19]  Andrew R. J. Marshall,et al.  Fabrication of InAs photodiodes with reduced surface leakage current , 2007, SPIE Security + Defence.

[20]  J. David,et al.  Avalanche multiplication in submicron AlxGa1−xAs/GaAs multilayer structures , 2000 .

[21]  W. C. Johnson,et al.  Use of a Schottky barrier to measure impact ionization coefficients in semiconductors , 1973 .

[22]  John P. R. David,et al.  Avalanche noise characteristics of thin GaAs structures with distributed carrier generation [APDs] , 2000 .

[23]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[24]  Chee Hing Tan,et al.  Temperature Dependence of Avalanche Breakdown in InP and InAlAs , 2010, IEEE Journal of Quantum Electronics.

[25]  John P. R. David,et al.  Electron multiplication in AlxGa1−xAs/GaAs heterostructures , 1997 .

[26]  A. Krier,et al.  InAsSb/InAsSbP light emitting diodes for the detection of CO and CO2 at room temperature , 1999 .

[27]  B. Ridley Lucky-drift mechanism for impact ionisation in semiconductors , 1983 .

[29]  A. Krier,et al.  Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 μm , 2000 .

[30]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[31]  J. David,et al.  Impact ionization probabilities as functions of two-dimensional space and time , 2001 .

[32]  George H. Rieke Detection of Light , 1994 .

[33]  R. B. Emmons,et al.  Avalanche‐Photodiode Frequency Response , 1967 .

[34]  S. Forrest,et al.  In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling , 1980 .

[35]  Joe C. Campbell,et al.  Performance of thin separate absorption, charge, and multiplication avalanche photodiodes , 1998 .

[36]  J. F. Chen,et al.  Molecular beam epitaxy growth of InAs-AlSb-GaSb interband tunneling diodes , 1993 .

[37]  Joe C. Campbell,et al.  Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .

[38]  C. Chia,et al.  Impact ionization in AlxGa1−xAs/GaAs single heterostructures , 1998 .

[39]  J. David,et al.  A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .

[40]  Chee Hing Tan,et al.  Extremely Low Excess Noise in InAs Electron Avalanche Photodiodes , 2009, IEEE Photonics Technology Letters.

[41]  J. Bude,et al.  Thresholds of impact ionization in semiconductors , 1992 .

[42]  M. Shaw,et al.  Improving the process capability of SU-8 , 2003 .

[43]  Undoped InSb Schottky detector for gamma-ray measurements , 2005, IEEE Transactions on Nuclear Science.

[44]  T Ashley,et al.  Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques , 1991 .

[45]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[46]  Joe C. Campbell,et al.  High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .

[47]  E. Derouin,et al.  240-GHz Gain-Bandwidth Product Back-Side Illuminated AlInAs Avalanche Photodiodes , 2010, IEEE Photonics Technology Letters.

[48]  Tai-Ping Sun,et al.  Room temperature unpassivated InAs p-i-n photodetectors grown by molecular beam epitaxy , 1997 .

[49]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[50]  L. Piper,et al.  Electron depletion at InAs free surfaces : Doping-induced acceptorlike gap states , 2006 .

[51]  John P. R. David,et al.  Temperature dependence of impact ionization in GaAs , 2003 .

[52]  John Marciniec,et al.  HgCdTe MWIR Back-Illuminated Electron-Initiated Avalanche Photodiode Arrays , 2006, SPIE Optics + Photonics.

[53]  Chee Hing Tan,et al.  High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit. , 2011, Optics express.

[54]  J. David,et al.  Temperature dependence of electron impact ionization in In0.53Ga0.47As , 2004 .

[55]  Joe C. Campbell,et al.  Chapter 5 Phototransistors for Lightwave Communications , 1985 .

[56]  W. Powazinik,et al.  Measurement of hole velocity in n-type InGaAs , 1987 .

[57]  D. Herbert,et al.  Self-consistent 2-D Monte Carlo Simulations of InSb APD , 2005, IEEE Transactions on Electron Devices.

[58]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[59]  Bahaa E. A. Saleh,et al.  Effect of dead space on the excess noise factor and time response of avalanche photodiodes , 1990 .

[60]  C. Tan,et al.  Avalanche Multiplication and Excess Noise in InAs Electron Avalanche Photodiodes at 77 K , 2011, IEEE Journal of Quantum Electronics.

[61]  Y. Amamiya,et al.  An ultra high speed waveguide avalanche photodiode for 40-Gb/s optical receiver , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[62]  D. Tsui Observation of Surface Bound State and Two-Dimensional Energy Band by Electron Tunneling , 1970 .

[63]  M. J. Deen,et al.  Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes , 1995 .

[64]  J. David,et al.  A simple model to determine multiplication and noise in avalanche photodiodes , 1998 .

[65]  R. Joshi,et al.  Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs , 2002 .

[66]  John P. R. David,et al.  Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes , 2008 .

[67]  S. Krishna,et al.  Low-Noise Mid-Wavelength Infrared Avalanche Photodiodes , 2008 .

[68]  Chee Hing Tan,et al.  Temperature Dependence of Leakage Current in InAs Avalanche Photodiodes , 2011, IEEE Journal of Quantum Electronics.

[69]  Haruhiko Kuwatsuka,et al.  Large multiplication-bandwidth products in APDs with a thin InP multiplication layer , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[70]  M. Kinch,et al.  The HgCdTe electron avalanche photodiode , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[71]  Gérard Destefanis,et al.  Gain and Dark Current Characteristics of Planar HgCdTe Avalanche Photo Diodes , 2007 .

[72]  Menachem Nathan,et al.  Suppression of leakage currents in InAsSb MWIR photodiodes by chemical treatment and illumination , 2010 .

[73]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[74]  Mitsuaki Yano,et al.  Molecular Beam Epitaxial Growth of InAs , 1977 .

[75]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[76]  J. Kim InSb MIS structures for infrared imaging devices , 1973 .

[77]  C. Tan,et al.  Material Considerations for Avalanche Photodiodes , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[78]  J. David,et al.  A simple model for avalanche multiplication including deadspace effects , 1999 .

[79]  Gerald B. Stringfellow,et al.  Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy , 1990 .

[80]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[81]  T. Nakata,et al.  High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes , 1999 .

[82]  D. Wolski,et al.  Comparative study of avalanche photodiodes with different structures in scintillation detection , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[83]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[84]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[85]  Christine M. Maziar,et al.  Design considerations for high performance avalanche photodiode multiplication layers , 1994 .

[86]  Yimin Kang,et al.  Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product. , 2009, Optics express.

[87]  Anthony Krier,et al.  A room temperature photovoltaic detector for the mid-infrared (1.8-3.4 m) wavelength region , 1998 .

[88]  J. David,et al.  The merits and limitations of local impact ionization theory [APDs] , 2000 .

[90]  Jonathon T. Olesberg,et al.  High detectivity GaInAsSb pin infrared photodetector for blood glucose sensing , 2000 .

[91]  G. E. Stillman,et al.  Chapter 5 Avalanche Photodiodes , 1977 .

[92]  A. Rogalski Infrared detectors: an overview , 2002 .

[93]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[94]  H. Kim,et al.  Reliable, high gain-bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb/s receivers , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[95]  G. Stareev Formation of extremely low resistance Ti/Pt/Au ohmic contacts to p‐GaAs , 1993 .

[96]  M. Achour Free-space optics wavelength selection: 10 µm versus shorter wavelengths[Invited] , 2003 .

[97]  J. David,et al.  Optimization of InP APDs for High-Speed Lightwave Systems , 2008, Journal of Lightwave Technology.

[98]  L. Coldren,et al.  Recent developments in avalanche photodiodes , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[99]  Chee Hing Tan,et al.  Impact Ionization in InAs Electron Avalanche Photodiodes , 2010, IEEE Transactions on Electron Devices.

[100]  Jeremy Copley,et al.  A low-noise laser-gated imaging system for long-range target identification , 2004, SPIE Defense + Commercial Sensing.

[101]  J. Rothman,et al.  High-Operating-Temperature HgCdTe Avalanche Photodiodes , 2009 .

[102]  Sadao Adachi,et al.  Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y , 1989 .

[103]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.