Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure

[1]  Boris Kozinsky,et al.  From order to disorder: The structure of lithium-conducting garnets Li7 − xLa3TaxZr2 − xO12 (x = 0–2) , 2012 .

[2]  Hui Xie,et al.  High lithium ion conduction in garnet-type Li6La3ZrTaO12 , 2011 .

[3]  R. Murugan,et al.  High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet , 2011 .

[4]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[5]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[6]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .

[7]  Hui Xie,et al.  Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .

[8]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[9]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[10]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[11]  Venkataraman Thangadurai,et al.  Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2) , 2008 .

[12]  Jeremy J. Titman,et al.  Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .

[13]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[14]  Venkataraman Thangadurai,et al.  Lithium ion conductivity of Li5+xBaxLa3−xTa2O12 (x = 0–2) with garnet-related structure in dependence of the barium content , 2007 .

[15]  I. Riess,et al.  Placement of reference electrode in solid electrolyte cells , 2007 .

[16]  Venkataraman Thangadurai,et al.  Developments of high-voltage all-solid-state thin-film lithium ion batteries , 2006 .

[17]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[18]  Stuart B. Adler,et al.  Reference Electrode Placement in Thin Solid Electrolytes , 2002 .

[19]  R. Richards,et al.  Reference electrode placement and seals in electrochemical oxygen generators , 2000 .

[20]  J. Janek Oscillatory kinetics at solid/solid phase boundaries in ionic crystals , 2000 .

[21]  J. Janek,et al.  Investigation of charge transport across the Ag|AgI-interface: (II) Dilatometric study of the anodic dissolution of silver , 1998 .

[22]  J. Winkler,et al.  Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode , 1998 .

[23]  J. Janek,et al.  Chemical kinetics of phase boundaries in solids , 1998 .

[24]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[25]  J. Janek,et al.  Periodic electrochemical oscillations at a solid-solid electrode , 1996 .

[26]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[27]  D. Mazza Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .

[28]  T. Jow,et al.  Interface between solid anode and solid electrolyte-effect of pressure on Li/LiI(Al2O3) interface , 1983 .

[29]  M. Meyer,et al.  Investigations on the kinetics of the anodic dissolution of lithium at the interface Li/Li3N , 1983 .

[30]  T. Jow,et al.  Interface Between Solid Electrode and Solid Electrolyte—A Study of the Li / LiI ( Al2 O 3 ) Solid‐Electrolyte System , 1983 .

[31]  U. Alpen,et al.  Anodic polarisation of the lithium/lithium nitride interface: Part I. Electrochemical measurements , 1981 .

[32]  U. Alpen,et al.  The behaviour of the lithium/lithium-nitride interface under anodic polarisation , 1981 .

[33]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[34]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[35]  J. Janek,et al.  Investigation of Charge Transport Across the Ag | AgI‐interface: (I) Occurrence of Periodic Phenomena During Anodic Dissolution of Silver , 1995 .