Fitness Landscapes: From Evolutionary Biology to Evolutionary Computation

This chapter gives an introduction to the book and an overview of fundamental concepts, notions and mathematical descriptions of fitness landscapes. Based on a brief discussion of the origin of landscape paradigms, major motivations to use fitness landscapes are presented. It is further considered how topological features of the landscape give raise to evolutionary dynamics. Also, examples of computational and empirical landscapes are introduced.

[1]  Joachim Krug,et al.  Evolutionary Accessibility of Mutational Pathways , 2011, PLoS Comput. Biol..

[2]  Michael Affenzeller,et al.  A Comprehensive Survey on Fitness Landscape Analysis , 2012, Recent Advances in Intelligent Engineering Systems.

[3]  P. Husbands,et al.  Neutral networks in an evolutionary robotics search space , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[4]  Paul Jung,et al.  No free lunch. , 2002, Health affairs.

[5]  Richard E. Lenski,et al.  Bacterial Population Negative Epistasis Between Beneficial Mutations in an Evolving , 2012 .

[6]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[7]  Christoph Adami,et al.  Annals of the New York Academy of Sciences the Use of Information Theory in Evolutionary Biology , 2022 .

[8]  Richard A. Watson,et al.  PERSPECTIVE:SIGN EPISTASIS AND GENETIC CONSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005 .

[9]  David W Hall,et al.  Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae. , 2010, The Journal of heredity.

[10]  Thomas Jansen,et al.  Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions , 2002, Theor. Comput. Sci..

[11]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[12]  Takashi Ikegami,et al.  Shapes and Self-Movement in Protocell Systems , 2009, Artificial Life.

[13]  Andries Petrus Engelbrecht,et al.  A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..

[14]  Ryszard Klempous,et al.  Recent Advances in Intelligent Engineering Systems , 2011, Studies in Computational Intelligence.

[15]  M. Kimura The role of compensatory neutral mutations in molecular evolution , 1985, Journal of Genetics.

[16]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[17]  Wing Hung Wong,et al.  Energy landscape of a spin-glass model: exploration and characterization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[19]  M. Wade,et al.  On the assignment of fitness to parents and offspring: whose fitness is it and when does it matter? , 2001 .

[20]  W. Ewens Mathematical Population Genetics , 1980 .

[21]  S. Wright,et al.  The shifting balance theory and macroevolution. , 1982, Annual review of genetics.

[22]  Peter F. Stadler,et al.  Algebraic Theory of Recombination Spaces , 1997, Evolutionary Computation.

[23]  Edouard Machery,et al.  Why I stopped worrying about the definition of life... and why you should as well , 2011, Synthese.

[24]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[25]  Bernd Freisleben,et al.  Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem , 1998, PPSN.

[26]  George R. McGhee,et al.  The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces , 2006 .

[27]  Daniel Polani,et al.  Information: Currency of life? , 2009, HFSP journal.

[28]  Gavin Sherlock,et al.  Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape , 2011, PLoS genetics.

[29]  D. J. Kiviet,et al.  Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. , 2011, Journal of theoretical biology.

[30]  John Wakeley,et al.  GENOME STRUCTURE AND THE BENEFIT OF SEX , 2011, Evolution; international journal of organic evolution.

[31]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[32]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[33]  G. Wagner,et al.  The topology of the possible: formal spaces underlying patterns of evolutionary change. , 2001, Journal of theoretical biology.

[34]  J. Crutchfield,et al.  Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? , 1999, Bulletin of mathematical biology.

[35]  Kalyanmoy Deb,et al.  Long Path Problems , 1994, PPSN.

[36]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[37]  Frank J. Poelwijk,et al.  Evolutionary Potential of a Duplicated Repressor-Operator Pair: Simulating Pathways Using Mutation Data , 2006, PLoS Comput. Biol..

[38]  P. Stadler Landscapes and their correlation functions , 1996 .

[39]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[40]  Spin-glass energy landscape , 1994 .

[41]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[42]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[43]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[44]  J. Gillespie MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE , 1984, Evolution; international journal of organic evolution.

[45]  Christoph Adami,et al.  Information theory in molecular biology , 2004, q-bio/0405004.

[46]  Sidney Yip,et al.  Energy landscape of deformation twinning in bcc and fcc metals , 2005 .

[47]  Josselin Garnier,et al.  Statistical distribution of the convergence time of evolutionary algorithms for long-path problems , 2000, IEEE Trans. Evol. Comput..

[48]  Brian S. Baigrie,et al.  Picturing Knowledge: Historical and Philosophical Problems Concerning the Use of Art in Science , 1996 .

[49]  Joseph C. Culberson,et al.  On the Futility of Blind Search: An Algorithmic View of No Free Lunch , 1998, Evolutionary Computation.

[50]  J. Krug,et al.  Quantitative analyses of empirical fitness landscapes , 2012, 1202.4378.

[51]  Eugene V. Koonin,et al.  Predictability of Evolutionary Trajectories in Fitness Landscapes , 2011, PLoS Comput. Biol..

[52]  C. Reeves,et al.  Properties of fitness functions and search landscapes , 2001 .

[53]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[54]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[55]  R. Lenski,et al.  Test of synergistic interactions among deleterious mutations in bacteria , 1997, Nature.

[56]  David Sherrington Landscape paradigms in physics and biology: Introduction and overview , 1996 .

[57]  J. Onuchic,et al.  Theory of Protein Folding This Review Comes from a Themed Issue on Folding and Binding Edited Basic Concepts Perfect Funnel Landscapes and Common Features of Folding Mechanisms , 2022 .

[58]  S. Wright Evolution in mendelian populations , 1931 .

[59]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[60]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[61]  Edward N Trifonov,et al.  Vocabulary of Definitions of Life Suggests a Definition , 2011, Journal of biomolecular structure & dynamics.

[62]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[63]  Takuyo Aita,et al.  Hierarchical distribution of ascending slopes, nearly neutral networks, highlands, and local optima at the dth order in an NK fitness landscape. , 2008, Journal of theoretical biology.

[64]  M. Eigen,et al.  The molecular quasi-species , 2007 .

[65]  Xabier E. Barandiaran,et al.  Behavioral Metabolution: The Adaptive and Evolutionary Potential of Metabolism-Based Chemotaxis , 2011, Artificial Life.

[66]  E. Shakhnovich Theoretical studies of protein-folding thermodynamics and kinetics. , 1997, Current opinion in structural biology.

[67]  Julian Francis Miller,et al.  Information Characteristics and the Structure of Landscapes , 2000, Evolutionary Computation.

[68]  Weinberger,et al.  Local properties of Kauffman's N-k model: A tunably rugged energy landscape. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[69]  J. Gravner,et al.  Percolation on the fitness hypercube and the evolution of reproductive isolation. , 1997, Journal of theoretical biology.

[70]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[71]  H Allen Orr THE POPULATION GENETICS OF ADAPTATION ON CORRELATED FITNESS LANDSCAPES: THE BLOCK MODEL , 2006, Evolution; international journal of organic evolution.

[72]  Eric Angela,et al.  On the landscape ruggedness of the quadratic assignment problem , 2001 .

[73]  H. Frauenfelder,et al.  The energy landscape in non-biological and biological molecules , 1998, Nature Structural Biology.

[74]  D. Schryvers,et al.  Landscape roughness at an atomic scale , 1997 .

[75]  P. Stadler,et al.  The landscape of the traveling salesman problem , 1992 .

[76]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[77]  J. Leo van Hemmen,et al.  Biology and mathematics: A fruitful merger of two cultures , 2007, Biological Cybernetics.

[78]  Andries Petrus Engelbrecht,et al.  Quantifying ruggedness of continuous landscapes using entropy , 2009, 2009 IEEE Congress on Evolutionary Computation.

[79]  Phil Husbands,et al.  Fitness Landscapes and Evolvability , 2002, Evolutionary Computation.

[80]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[81]  Sebastian Bonhoeffer,et al.  Exploring the Complexity of the HIV-1 Fitness Landscape , 2012, PLoS genetics.

[82]  Sébastien Vérel,et al.  Local Optima Networks of NK Landscapes With Neutrality , 2011, IEEE Transactions on Evolutionary Computation.

[83]  Nigel F. Delaney,et al.  Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation , 2011, Science.

[84]  R. Durrett,et al.  Rigorous results for the N K model , 2003 .

[85]  E. Keller A clash of two cultures , 2007, Nature.

[86]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[87]  Richard A. Watson,et al.  On Crossing Fitness Valleys with the Baldwin Effect , 2006 .

[88]  Michael Ruse,et al.  Are Pictures Really Necessary? The Case of Sewell Wright's "Adaptive Landscapes" , 1990, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[89]  Carol E. Cleland Life without definitions , 2012, Synthese.

[90]  T DOBZHANSKY,et al.  BIOLOGY, MOLECULAR AND ORGANISMIC. , 1964, American zoologist.

[91]  D. Hartl,et al.  Principles of population genetics , 1981 .

[92]  Marek Kimmel,et al.  Forward-Time Population Genetics Simulations: Methods, Implementation, and Applications , 2012 .

[93]  Kazuhiro Ohkura,et al.  Estimating the Degree of Neutrality in Fitness Landscapes by the Nei’s Standard Genetic Distance – An Application to Evolutionary Robotics – , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[94]  G. Wagner,et al.  Population dependent Fourier decomposition of fitness landscapes over recombination spaces: Evolvability of complex characters , 2000, Bulletin of mathematical biology.

[95]  N. Barton Fitness Landscapes and the Origin of Species , 2004 .

[96]  Immanuel Kant Metaphysische Anfangsgründe der Naturwissenschaft , 1997 .

[97]  Günter P. Wagner,et al.  Asymmetry of Configuration Space Induced by Unequal Crossover: Implications for a Mathematical Theory of Evolutionary Innovation , 1999, Artificial Life.

[98]  P. Schuster,et al.  Approximate scaling properties of RNA free energy landscapes. , 1996, Journal of theoretical biology.

[99]  W. Provine Sewall Wright and evolutionary biology , 1987 .

[100]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[101]  J. Krug,et al.  Exploring the Effect of Sex on Empirical Fitness Landscapes , 2009, The American Naturalist.

[102]  Chrisantha Fernando,et al.  The origin of autonomous agents by natural selection , 2008, Biosyst..

[103]  Stephen P. Miller,et al.  The Biochemical Architecture of an Ancient Adaptive Landscape , 2005, Science.

[104]  David M. McCandlish,et al.  VISUALIZING FITNESS LANDSCAPES , 2011, Evolution; international journal of organic evolution.

[105]  A. Ferré-D’Amaré,et al.  Rapid Construction of Empirical RNA Fitness Landscapes , 2010, Science.

[106]  E. D. Weinberger,et al.  The NK model of rugged fitness landscapes and its application to maturation of the immune response. , 1989, Journal of theoretical biology.

[107]  Janet Wiles,et al.  Hyperspace Geography: Visualizing Fitness Landscapes beyond 4D , 2006 .

[108]  Sheldon H. Jacobson,et al.  Global optima results for the Kauffman NK model , 2006, Math. Program..

[109]  M. Pigliucci,et al.  Making Sense of Evolution: The Conceptual Foundations of Evolutionary Biology , 2006 .

[110]  Arend Hintze,et al.  Critical Properties of Complex Fitness Landscapes , 2010, ALIFE.

[111]  Ilya Nemenman,et al.  Genotype to Phenotype Mapping and the Fitness Landscape of the E. coli lac Promoter , 2012, PloS one.

[112]  G. Wagner,et al.  Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism , 1996 .

[113]  Adam Prügel-Bennett,et al.  Maximum Satisfiability: Anatomy of the Fitness Landscape for a Hard Combinatorial Optimization Problem , 2012, IEEE Transactions on Evolutionary Computation.

[114]  Christian M. Reidys,et al.  Neutrality in fitness landscapes , 2001, Appl. Math. Comput..

[115]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[116]  Richard J. Duro,et al.  Evolutionary algorithm characterization in real parameter optimization problems , 2013, Appl. Soft Comput..

[117]  J. Kingman A simple model for the balance between selection and mutation , 1978 .

[118]  Christian M. Reidys Combinatorial Computational Biology of RNA - Pseudoknots and Neutral Networks , 2010 .

[119]  Yuzuru Husimi,et al.  Adaptive walks by the fittest among finite random mutants on a Mt. Fuji-type fitness landscape II. Effect of small non-additivity , 2000, Journal of mathematical biology.

[120]  Sébastien Vérel,et al.  Complex-network analysis of combinatorial spaces: The NK landscape case , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[122]  David G. Green,et al.  Holey Fitness Landscapes and the Maintenance of Evolutionary Diversity , 2008, ALIFE.

[123]  Christopher R. Stephens,et al.  Landscapes and Effective Fitness , 2003 .

[124]  Benoît Roux,et al.  Free energy landscape of A-DNA to B-DNA conversion in aqueous solution. , 2005, Journal of the American Chemical Society.

[125]  Joel E. Cohen,et al.  Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better , 2004, PLoS biology.

[126]  D. J. Kiviet,et al.  Empirical fitness landscapes reveal accessible evolutionary paths , 2007, Nature.

[127]  Günter Rudolph,et al.  How Mutation and Selection Solve Long-Path Problems in Polynomial Expected Time , 1996, Evolutionary Computation.

[128]  Khaled Mellouli,et al.  The k-coloring fitness landscape , 2011, J. Comb. Optim..

[129]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[130]  Cynthia B. Phillips,et al.  Europa as an Abode of Life , 2004, Origins of life and evolution of the biosphere.

[131]  A. Perelson,et al.  Protein evolution on partially correlated landscapes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Dario Floreano,et al.  Artificial Life X , 2006 .

[133]  G. F. Joyce,et al.  Self-Sustained Replication of an RNA Enzyme , 2009, Science.

[134]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[135]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[136]  S. Wright Surfaces of Selective Value Revisited , 1988, The American Naturalist.

[137]  Marcus W Feldman,et al.  The rate at which asexual populations cross fitness valleys. , 2009, Theoretical population biology.

[138]  Sébastien Vérel,et al.  Local Optima Networks of the Quadratic Assignment Problem , 2010, IEEE Congress on Evolutionary Computation.

[139]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[140]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[141]  Darrell P. Rowbottom,et al.  Models in Biology and Physics: What’s the Difference? , 2009 .

[142]  Hendrik Richter,et al.  Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization , 2008 .

[143]  E. Mayr The Growth of Biological Thought: Diversity, Evolution, and Inheritance , 1983 .

[144]  M. Wade,et al.  PERSPECTIVE: THE THEORIES OF FISHER AND WRIGHT IN THE CONTEXT OF METAPOPULATIONS: WHEN NATURE DOES MANY SMALL EXPERIMENTS , 1998, Evolution; international journal of organic evolution.

[145]  Ernesto Costa,et al.  Multidimensional Knapsack Problem: A Fitness Landscape Analysis , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[146]  Lior Pachter,et al.  Analysis of epistatic interactions and fitness landscapes using a new geometric approach , 2007, BMC Evolutionary Biology.