Conical Partition Algorithm for Maximizing the Sum of dc Ratios

The following problem is considered in this paper: $$max_{x\in d\{\Sigma^m_{j=1}g_j(x)|h_j(x)\},}\, where\,g_j(x)\geq 0\, and\,h_j(x) > 0, j = 1,\ldots,m,$$ are d.c. (difference of convex) functions over a convex compact set D in R^n. Specifically, it is reformulated into the problem of maximizing a linear objective function over a feasible region defined by multiple reverse convex functions. Several favorable properties are developed and a branch-and-bound algorithm based on the conical partition and the outer approximation scheme is presented. Preliminary results of numerical experiments are reported on the efficiency of the proposed algorithm.

[1]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[2]  Pierre Hansen,et al.  On-line and off-line vertex enumeration by adjacency lists , 1991, Oper. Res. Lett..

[3]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[4]  Klaus Ritter,et al.  A Parametric Method for Solving Certain Nonconcave Maximization Problems , 1967, J. Comput. Syst. Sci..

[5]  Siegfried Schaible,et al.  Fractional programming: The sum-of-ratios case , 2003, Optim. Methods Softw..

[6]  Yoshitsugu Yamamoto,et al.  GLOBAL OPTIMIZATION PROBLEM WITH MULTIPLE REVERSE CONVEX CONSTRAINTS AND ITS APPLICATION TO OUT-OF-ROUNDNESS PROBLEM , 1996 .

[7]  S. Schaible Fractional Programming: Transformations, Duality and Algorithmic Aspects. , 1973 .

[8]  A. Cambini,et al.  On Maximizing a Sum of Ratios , 1989 .

[9]  Roland W. Freund,et al.  Solving the Sum-of-Ratios Problem by an Interior-Point Method , 2001, J. Glob. Optim..

[10]  S. Schaible Fractional Programming. I, Duality , 1976 .

[11]  HAROLD P. BENSON Using concave envelopes to globally solve the nonlinear sum of ratios problem , 2002, J. Glob. Optim..

[12]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[13]  Xiaodong Wu,et al.  Optimizing the sum of linear fractional functions and applications , 2000, SODA '00.

[14]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[15]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[16]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[17]  H. Konno,et al.  Minimizing sums and products of linear fractional functions over a polytope , 1999 .

[18]  Susan W. Palocsay,et al.  Optimizing the sum of linear fractional functions , 1992 .

[19]  Toshihide Ibaraki,et al.  Parametric approaches to fractional programs , 1983, Math. Program..

[20]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[21]  M. Sniedovich A new look at fractional programming , 1987 .

[22]  Xiaodong Wu,et al.  Efficient Algorithms and Implementations for Optimizing the Sum of Linear Fractional Functions, with Applications , 2005, J. Comb. Optim..

[23]  H. Mine,et al.  ALGORITHMS FOR QUADRATIC FRACTIONAL PROGRAMMING PROBLEMS , 1976 .

[24]  Hiroshi Konno,et al.  Generalized linear multiplicative and fractional programming , 1991 .

[25]  Takahito Kuno,et al.  A branch-and-bound algorithm for maximizing the sum of several linear ratios , 2002, J. Glob. Optim..

[26]  Jianming Shi,et al.  A Combined Algorithm for Fractional Programming , 2001, Ann. Oper. Res..

[27]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.