Drosophila as a model for human neurodegenerative disease.

Among many achievements in the neurodegeneration field in the past decade, two require special attention due to the huge impact on our understanding of molecular and cellular pathogenesis of human neurodegenerative diseases. First is defining specific mutations in familial neurodegenerative diseases and second is modeling these diseases in easily manipulable model organisms including the fruit fly, nematode, and yeast. The power of these genetic systems has revealed many genetic factors involved in the various pathways affected, as well as provided potential drug targets for therapeutics. This review focuses on fruit fly models of human neurodegenerative diseases, with emphasis on how fly models have provided new insights into various aspects of human diseases.

[1]  S. Benzer,et al.  Genetic suppression of polyglutamine toxicity in Drosophila. , 2000, Science.

[2]  R. Nitsch,et al.  Age-Dependent Neurodegeneration and Alzheimer-Amyloid Plaque Formation in Transgenic Drosophila , 2004, The Journal of Neuroscience.

[3]  W. Bender,et al.  A Drosophila model of Parkinson's disease , 2000, Nature.

[4]  H. Paulson,et al.  Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. , 2000, Human molecular genetics.

[5]  G. Mardon,et al.  Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress , 2004, Development.

[6]  Beate Gerstbrein,et al.  Dying for a cause: invertebrate genetics takes on human neurodegeneration , 2003, Nature Reviews Genetics.

[7]  H. Paulson,et al.  Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70 , 1999, Nature Genetics.

[8]  B. Lu,et al.  PAR-1 Kinase Plays an Initiator Role in a Temporally Ordered Phosphorylation Process that Confers Tau Toxicity in Drosophila , 2004, Cell.

[9]  Nutan Sharma,et al.  TorsinA and heat shock proteins act as molecular chaperones: suppression of α‐synuclein aggregation , 2002, Journal of neurochemistry.

[10]  K. Siwicki,et al.  Drosophila Lacking dfmr1 Activity Show Defects in Circadian Output and Fail to Maintain Courtship Interest , 2002, Neuron.

[11]  Miratul M. K. Muqit,et al.  Modelling neurodegenerative diseases in Drosophila: a fruitful approach? , 2002, Nature Reviews Neuroscience.

[12]  M. Mckeown,et al.  blue cheese Mutations Define a Novel, Conserved Gene Involved in Progressive Neural Degeneration , 2003, The Journal of Neuroscience.

[13]  S. Narumiya,et al.  Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo , 1996, Nature Genetics.

[14]  S. Benzer,et al.  Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1. , 2002, Human molecular genetics.

[15]  H. Theisen,et al.  Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. , 2000, Human molecular genetics.

[16]  H. Zoghbi,et al.  Mouse and fly models of neurodegeneration. , 2002, Trends in genetics : TIG.

[17]  E. Masliah,et al.  Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease , 2005, Science.

[18]  M. Mutsuddi,et al.  The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila , 2004, Current Biology.

[19]  W. Gelbart,et al.  Research resources for Drosophila: the expanding universe , 2005, Nature Reviews Genetics.

[20]  P. Auluck,et al.  Pharmacological prevention of Parkinson disease in Drosophila , 2002, Nature Medicine.

[21]  Georg Auburger,et al.  The ubiquitin pathway in Parkinson's disease , 1998, Nature.

[22]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Rainer Duden,et al.  Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. , 2002, Human molecular genetics.

[24]  S. W. Davies,et al.  Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Lang,et al.  Parkinson's disease. First of two parts. , 1998, The New England journal of medicine.

[26]  Francesco Scaravilli,et al.  Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease , 2004, Nature Genetics.

[27]  Christina A. Wilson,et al.  Distinct presenilin‐dependent and presenilin‐independent γ‐secretases are responsible for total cellular Aβ production , 2003 .

[28]  J. C. Greene,et al.  Immune responses , 2004 .

[29]  P. Pandolfi,et al.  SUMO Modification of Huntingtin and Huntington's Disease Pathology , 2004, Science.

[30]  H. Bellen,et al.  Emerging technologies for gene manipulation in Drosophila melanogaster , 2005, Nature Reviews Genetics.

[31]  Scott T. Brady,et al.  Neuropathogenic Forms of Huntingtin and Androgen Receptor Inhibit Fast Axonal Transport , 2003, Neuron.

[32]  A. Matsukage,et al.  Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration , 2002, Cell Death and Differentiation.

[33]  S. Zipursky,et al.  Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. , 2005, Human molecular genetics.

[34]  R. Morimoto,et al.  Role of the Heat‐Shock Response in the Life and Death of Proteins , 1998, Annals of the New York Academy of Sciences.

[35]  Effat S. Emamian,et al.  Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice , 2003, Neuron.

[36]  N. Bonini Chaperoning brain degeneration , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  James F. Gusella,et al.  Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease , 2000, Nature Reviews Neuroscience.

[38]  Jeremy N. Skepper,et al.  α-Synuclein Is Degraded by Both Autophagy and the Proteasome* , 2003, Journal of Biological Chemistry.

[39]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[40]  A. Goate,et al.  Aph-2/Nicastrin An Essential Component of γ-Secretase and Regulator of Notch Signaling and Presenilin Localization , 2002, Neuron.

[41]  Robert L. Nussbaum,et al.  Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease , 1997 .

[42]  L. Pallanck,et al.  A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. , 2002, Genetics.

[43]  D. Housman,et al.  Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila , 2001, Nature.

[44]  Nancy M Bonini,et al.  Human neurodegenerative disease modeling using Drosophila. , 2003, Annual review of neuroscience.

[45]  J. Houseley,et al.  Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. , 2005, Human molecular genetics.

[46]  D. Selkoe,et al.  Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases , 2004, Nature Cell Biology.

[47]  Kuo-Hsuan Chang,et al.  Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson’s disease , 2004, Human Genetics.

[48]  Isao Nishimura,et al.  Parkin Suppresses Dopaminergic Neuron-Selective Neurotoxicity Induced by Pael-R in Drosophila , 2003, Neuron.

[49]  M. Fortini,et al.  Apoptotic Activities of Wild-Type and Alzheimer's Disease-Related Mutant Presenilins in Drosophila melanogaster , 1999, The Journal of cell biology.

[50]  R. Albin,et al.  Ectopically Expressed CAG Repeats Cause Intranuclear Inclusions and a Progressive Late Onset Neurological Phenotype in the Mouse , 1997, Cell.

[51]  R. Wilson,et al.  Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X , 2001, Neurology.

[52]  S. Lindquist,et al.  The role of heat-shock proteins in thermotolerance. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  R. Paro,et al.  Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. E. Staveley,et al.  parkin counteracts symptoms in a Drosophila model of Parkinson's disease , 2004, BMC Neuroscience.

[55]  N. Bonini,et al.  Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. , 2002, Human molecular genetics.

[56]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[57]  S. Birman,et al.  Chronic Exposure to Rotenone Models Sporadic Parkinson's Disease in Drosophila melanogaster , 2004, The Journal of Neuroscience.

[58]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[59]  Harry T Orr,et al.  SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat , 1995, Cell.

[60]  H. Zoghbi,et al.  Identification of genes that modify ataxin-1-induced neurodegeneration , 2000, Nature.

[61]  L. Goldstein,et al.  Disruption of Axonal Transport and Neuronal Viability by Amyloid Precursor Protein Mutations in Drosophila , 2001, Neuron.

[62]  Max F. Perutz,et al.  Glutamine repeats and neurodegenerative diseases: molecular aspects. , 1999, Trends in biochemical sciences.

[63]  M. Vila,et al.  The parkinsonian toxin MPTP: action and mechanism. , 2000, Restorative neurology and neuroscience.

[64]  Clemens R Scherzer,et al.  Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson's disease. , 2003, Human molecular genetics.

[65]  H. Zoghbi,et al.  Fourteen and counting: unraveling trinucleotide repeat diseases. , 2000, Human molecular genetics.

[66]  Iris Salecker,et al.  Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons , 1998, Neuron.

[67]  John Q. Trojanowski,et al.  Chaperone Suppression of α-Synuclein Toxicity in a Drosophila Model for Parkinson's Disease , 2001, Science.

[68]  Ann-Shyn Chiang,et al.  Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: A potential model for Alzheimer's disease , 2004 .

[69]  M. Goedert,et al.  Glycogen synthase kinase-3β phosphorylates tau protein at multiple sites in intact cells , 1995, Neuroscience Letters.

[70]  K. White,et al.  Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport , 1999, Current Biology.

[71]  N. Nukina,et al.  Recent advances in understanding the pathogenesis of polyglutamine diseases: involvement of molecular chaperones and ubiquitin-proteasome pathway , 2003, Journal of Chemical Neuroanatomy.

[72]  K. Fischbeck,et al.  Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. , 2003, Genes & development.

[73]  F. Gao Understanding Fragile X Syndrome Insights from Retarded Flies , 2002, Neuron.

[74]  E. Mandelkow,et al.  Alzheimer's disease: The tangled tale of tau , 1999, Nature.

[75]  Nancy M Bonini,et al.  Expanded Polyglutamine Protein Forms Nuclear Inclusions and Causes Neural Degeneration in Drosophila , 1998, Cell.

[76]  H. Zoghbi,et al.  Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1 , 2003, Cell.

[77]  Gerald M. Rubin,et al.  Drosophila Fragile X-Related Gene Regulates the MAP1B Homolog Futsch to Control Synaptic Structure and Function , 2001, Cell.

[78]  S. Tomita,et al.  Overexpression of human amyloid precursor protein in Drosophila. , 2000, Molecular cell biology research communications : MCBRC.

[79]  Richard G. Brusch,et al.  Disruption of Axonal Transport by Loss of Huntingtin or Expression of Pathogenic PolyQ Proteins in Drosophila , 2003, Neuron.

[80]  J. Nemes,et al.  The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). , 2000, Human molecular genetics.

[81]  M. Fortini,et al.  Gene expression pattern Identification and characterization of the Drosophila tau homolog , 2001 .

[82]  Olaf Riess,et al.  AlaSOPro mutation in the gene encoding α-synuclein in Parkinson's disease , 1998, Nature Genetics.

[83]  S. W. Davies,et al.  Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice , 1996, Cell.

[84]  T. Dawson,et al.  Molecular Pathways of Neurodegeneration in Parkinson's Disease , 2003, Science.

[85]  Yan Wang,et al.  Pharmacological Rescue of Synaptic Plasticity, Courtship Behavior, and Mushroom Body Defects in a Drosophila Model of Fragile X Syndrome , 2005, Neuron.

[86]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[87]  J. Littleton,et al.  Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Jochen Klucken,et al.  Hsp70 Reduces α-Synuclein Aggregation and Toxicity* , 2004, Journal of Biological Chemistry.

[89]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[90]  Todd B. Sherer,et al.  Subcutaneous Rotenone Exposure Causes Highly Selective Dopaminergic Degeneration and α-Synuclein Aggregation , 2003, Experimental Neurology.

[91]  P. Lansbury,et al.  Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. , 2003, Annual review of neuroscience.

[92]  D L Price,et al.  Alzheimer's disease: genetic studies and transgenic models. , 1998, Annual review of genetics.

[93]  A. Lang,et al.  Parkinson's disease. Second of two parts. , 1998, The New England journal of medicine.

[94]  T. Tabata,et al.  Androgen-Dependent Neurodegeneration by Polyglutamine-Expanded Human Androgen Receptor in Drosophila , 2002, Neuron.

[95]  J. Shulman,et al.  Genetic modifiers of tauopathy in Drosophila. , 2003, Genetics.

[96]  H. Zoghbi,et al.  Glutamine repeats and neurodegeneration. , 2000, Annual review of neuroscience.

[97]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[98]  D. Selkoe,et al.  Deciphering the genetic basis of Alzheimer's disease. , 2002, Annual review of genomics and human genetics.

[99]  E. Richfield,et al.  Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? , 2000, Brain Research.

[100]  Peng Jin,et al.  RNA-Mediated Neurodegeneration Caused by the Fragile X Premutation rCGG Repeats in Drosophila , 2003, Neuron.

[101]  Joshua M. Shulman,et al.  Tauopathy in Drosophila: Neurodegeneration Without Neurofibrillary Tangles , 2001, Science.

[102]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[103]  Andrew J. Schroeder,et al.  Drosophila Fragile X Protein, DFXR, Regulates Neuronal Morphology and Function in the Brain , 2002, Neuron.

[104]  H. Paulson,et al.  Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. , 2005, Molecular cell.