Processing and characterization of Fe-35Mn biodegradable metallic materials

[1]  Chen Yang,et al.  3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration. , 2018, ACS biomaterials science & engineering.

[2]  Boeun Lee,et al.  Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. , 2016, Acta biomaterialia.

[3]  C. Biffi,et al.  CO2-rich atmosphere strongly affects the degradation of Fe-21Mn-1C for biodegradable metallic implants , 2016 .

[4]  D. Yin,et al.  A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility. , 2016, Colloids and surfaces. B, Biointerfaces.

[5]  Yufeng Zheng,et al.  In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique. , 2016, Colloids and surfaces. B, Biointerfaces.

[6]  Qiufen Tu,et al.  Improvement of corrosion resistance and biocompatibility of biodegradable metallic vascular stent via plasma allylamine polymerized coating , 2016 .

[7]  L. Stanciu,et al.  Surface modifications through dealloying of Fe–Mn and Fe–Mn–Zn alloys developed to create tailorable, nanoporous, bioresorbable surfaces , 2016 .

[8]  P. Cao,et al.  Degradable porous Fe-35wt.%Mn produced via powder sintering from NH4HCO3 porogen , 2015 .

[9]  Yufeng Zheng,et al.  Progress of biodegradable metals , 2014 .

[10]  Lianjun Wang,et al.  Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering , 2013 .

[11]  Deyuan Zhang,et al.  Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent , 2013, Journal of Materials Science: Materials in Medicine.

[12]  Yufeng Zheng,et al.  Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. , 2011, Acta biomaterialia.

[13]  Yufeng Zheng,et al.  In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material , 2011 .

[14]  Diego Mantovani,et al.  Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. , 2010, Acta biomaterialia.

[15]  E. Zhang,et al.  Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial , 2010, Journal of materials science. Materials in medicine.

[16]  D. Mantovani,et al.  Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. , 2009, Journal of biomedical materials research. Part A.

[17]  Diego Mantovani,et al.  Iron–manganese: New class of metallic degradable biomaterials prepared by powder metallurgy , 2008 .

[18]  Philipp Beerbaum,et al.  Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , 2006, Biomaterials.

[19]  M. Peuster,et al.  A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits , 2001, Heart.

[20]  C. Keen,et al.  Manganese metabolism in animals and humans including the toxicity of manganese. , 2000, Metal ions in biological systems.