CloudSat instrument requirements as determined from ECMWF forecasts of global cloudiness

In the years preceding the launch of CloudSat in 2003, important questions regarding instrument requirements sufficient to fulfilling the mission's science objectives must be addressed. Qualified and useful answers to these questions require in turn a careful simulation strategy whereupon the observing system and modeled environment are represented as realistically as possible. In this paper, we consider the W band (94 GHz) cloud radar minimum detectable signal (MDS) requirement in the context of specified boundary fluxes and in-cloud heating rates. Realistic cloud distribution and water contents from short-range forecasts produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) are converted to attenuated equivalent radar reflectivity to yield full-orbit virtual CloudSat observations. The radiative implications of variable radar MDS are examined using a two-stream radiative transfer model. Simulations show that a MDS of ∼−28 dBZ will detect a fraction of the true cloud field sufficient to reconstruct the instantaneous top-of-atmosphere and surface fluxes to within Clouds and the Earth's Radiant Energy System (CERES) requirements. The results of this analysis form collectively a statement on instrument engineering requirements that is predicated on and hence mappable directly to the physical parameters that define CloudSat science objectives.

[1]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part I: Theory , 2000 .

[2]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[3]  David M. Winker,et al.  An overview of LITE: NASA's Lidar In-space Technology Experiment , 1996, Proc. IEEE.

[4]  Stephen A. Klein,et al.  A parametrization of the effects of cloud and precipitation overlap for use in general‐circulation models , 2000 .

[5]  Greg Michael McFarquhar,et al.  The role of spaceborne millimetre-wave radar in the global monitoring of ice cloud , 1995 .

[6]  Graeme L. Stephens,et al.  Theoretical Aspects of Modeling Backscattering by Cirrus Ice Particles at Millimeter Wavelengths , 1995 .

[7]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[8]  Stephen A. Klein,et al.  The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model , 1999 .

[9]  Greg Michael McFarquhar,et al.  The Role of Spaceborne Millimeter-Wave Radar in the Global Monitoring of Ice Cloud , 1995 .

[10]  David M. Winker,et al.  Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs , 1994 .

[11]  Robert F. Adler,et al.  A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite , 1988 .

[12]  Steven D. Miller,et al.  A validation survey of the ECMWF prognostic cloud scheme using LITE , 1999 .

[13]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[14]  L. Radke,et al.  A Summary of the Physical Properties of Cirrus Clouds , 1990 .

[15]  Graeme L. Stephens,et al.  Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes , 1978 .

[16]  Steven D. Miller,et al.  A multi-sensor approach to the retrieval and model validation of global cloudiness , 1999 .

[17]  Robert A. Houze,et al.  Comparison of Radar Data from the TRMM Satellite and Kwajalein Oceanic Validation Site , 2000 .

[18]  Andrew K. Heidinger,et al.  Molecular Line Absorption in a Scattering Atmosphere. Part II: Application to Remote Sensing in the O2 A band , 2000 .

[19]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[20]  Sergey Y. Matrosov Theoretical study of radar polarization parameters obtained from cirrus clouds , 1991 .

[21]  Taneil Uttal,et al.  On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles , 1998 .

[22]  Kenneth Sassen,et al.  Estimation of Cloud Content by W-Band Radar , 1996 .

[23]  K. Sassen,et al.  Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds. , 1992, Applied optics.

[24]  G. L. Stephens,et al.  Radiation Profiles in Extended Water Clouds. I: Theory , 1978 .

[25]  S. Klein,et al.  Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model , 1999 .

[26]  David M. Winker,et al.  PICASSO-CENA mission , 1999, Remote Sensing.

[27]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[28]  Gerald G. Mace,et al.  Validation of hydrometeor occurrence predicted by the ECMWF Model using millimeter wave radar data , 1998 .

[29]  Christian Jakob,et al.  Cloud Cover in the ECMWF Reanalysis , 1999 .

[30]  Steven D. Miller,et al.  A multisensor diagnostic satellite cloud property retrieval scheme , 2000 .

[31]  P. Ray,et al.  Broadband complex refractive indices of ice and water. , 1972, Applied optics.

[32]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[33]  Preface [to special section on The Earth Observing System (EOS) AM‐1 Platform] , 1998 .