The six elements to block-building approaches for the single container loading problem

In the Single Container Loading Problem, the aim is to pack three-dimensional boxes into a three-dimensional container so as to maximize the volume utilization of the container. Many recently successful techniques for this problem share a similar structure involving the use of blocks of boxes. However, each technique comprises several seemingly disparate parts, which makes it difficult to analyze these techniques in a systematic manner. By dissecting block building approaches into 6 common elements, we found that existing techniques only differ in the strategies used for each element. This allows us to better understand these algorithms and identify their effective strategies. We then combine those effective strategies into a greedy heuristic for the SCLP problem. Computational experiments on 1,600 commonly used test cases show that our approach outperforms all other existing single-threaded approaches, and is comparable to the best parallel approach to the SCLP. It demonstrates the usefulness of our component-based analysis in the design of block building algorithms.

[1]  Mauricio G. C. Resende,et al.  A parallel multi-population biased random-key genetic algorithm for a container loading problem , 2012, Comput. Oper. Res..

[2]  David Connolly Knapsack Problems: Algorithms and Computer Implementations , 1991 .

[3]  Eberhard E. Bischoff,et al.  Weight distribution considerations in container loading , 1999, Eur. J. Oper. Res..

[4]  E. E. Bischoff,et al.  Three-dimensional packing of items with limited load bearing strength , 2006, Eur. J. Oper. Res..

[5]  Kun He,et al.  A caving degree approach for the single container loading problem , 2009, Eur. J. Oper. Res..

[6]  Chen-Fu Chien,et al.  A recursive computational procedure for container loading , 1998 .

[7]  Andreas Bortfeldt,et al.  A Tree Search Algorithm for Solving the Container Loading Problem , 2010, INFORMS J. Comput..

[8]  Hermann Gehring,et al.  A hybrid genetic algorithm for the container loading problem , 2001, Eur. J. Oper. Res..

[9]  A. Moura,et al.  A GRASP approach to the container-loading problem , 2005, IEEE Intelligent Systems.

[10]  Michael Eley,et al.  Solving container loading problems by block arrangement , 2002, Eur. J. Oper. Res..

[11]  Reinaldo Morabito,et al.  An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container , 2002, Eur. J. Oper. Res..

[12]  Ramón Alvarez-Valdés,et al.  Neighborhood structures for the container loading problem: a VNS implementation , 2010, J. Heuristics.

[13]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[14]  Andrew Lim,et al.  3-D Container Packing Heuristics , 2005, Applied Intelligence.

[15]  Andrew Lim,et al.  A multi-faced buildup algorithm for three-dimensional packing problems , 2003 .

[16]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[17]  P. Hanlon Counting interval graphs , 1982 .

[18]  Daniel Mack,et al.  A parallel tabu search algorithm for solving the container loading problem , 2003, Parallel Comput..

[19]  Harald Dyckhoff,et al.  Cutting and Packing in Production and Distribution , 1992 .

[20]  Eberhard E. Bischoff,et al.  Allowing for weight considerations in container loading , 1998 .

[21]  Jan Riehme,et al.  An efficient approach for the multi-pallet loading problem , 2000, Eur. J. Oper. Res..

[22]  Andrew Lim,et al.  The container loading problem , 2005, SAC '05.

[23]  E. E. Bischoff,et al.  Issues in the development of approaches to container loading , 1995 .

[24]  Hermann Gehring,et al.  A Genetic Algorithm for Solving the Container Loading Problem , 1997 .

[25]  Sándor P. Fekete,et al.  A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing , 2003, Math. Oper. Res..

[26]  Ramón Alvarez-Valdés,et al.  A Maximal-Space Algorithm for the Container Loading Problem , 2008, INFORMS J. Comput..

[27]  Andrew Lim,et al.  The multiple container loading cost minimization problem , 2011, Eur. J. Oper. Res..

[28]  D. Mack,et al.  A parallel hybrid local search algorithm for the container loading problem , 2004 .

[29]  Harald Dyckhoff,et al.  Cutting and packing in production and distribution : a typology and bibliography , 1992 .

[30]  Chak-Kuen Wong,et al.  An effective quasi-human based heuristic for solving the rectangle packing problem , 2002, Eur. J. Oper. Res..

[31]  David Pisinger,et al.  Heuristics for the container loading problem , 2002, Eur. J. Oper. Res..

[32]  Duanbing Chen,et al.  A new heuristic algorithm for rectangle packing , 2007, Comput. Oper. Res..

[33]  Sándor P. Fekete,et al.  An Exact Algorithm for Higher-Dimensional Orthogonal Packing , 2006, Oper. Res..

[34]  Kun He,et al.  An efficient placement heuristic for three-dimensional rectangular packing , 2011, Comput. Oper. Res..