Generalized additive modelling of sample extremes

Summary.  We describe smooth non‐stationary generalized additive modelling for sample extremes, in which spline smoothers are incorporated into models for exceedances over high thresholds. Fitting is by maximum penalized likelihood estimation, with uncertainty assessed by using differences of deviances and bootstrap simulation. The approach is illustrated by using data on extreme winter temperatures in the Swiss Alps, analysis of which shows strong influence of the north Atlantic oscillation. Benefits of the new approach are flexible and appropriate modelling of extremes, more realistic assessment of estimation uncertainty and the accommodation of complex dependence patterns.

[1]  George Grosvenor Statistics of the Abatement in Crime in England and Wales, during the Twenty Years Ended 1887–88 , 1890 .

[2]  D. Cox,et al.  A General Definition of Residuals , 1968 .

[3]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[4]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[5]  J. Kent Robust properties of likelihood ratio tests , 1982 .

[6]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[7]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[8]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[9]  T. Cole Fitting Smoothed Centile Curves to Reference Data , 1988 .

[10]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[11]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[12]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[13]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[14]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[15]  Harry Joe,et al.  Bivariate Threshold Methods for Extremes , 1992 .

[16]  T J Cole,et al.  Smoothing reference centile curves: the LMS method and penalized likelihood. , 1992, Statistics in medicine.

[17]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[18]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[19]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[20]  G. Wahba,et al.  Bootstrap confidence intervals for smoothing splines and their comparison to bayesian confidence intervals , 1995 .

[21]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[22]  M. Rebetez,et al.  Regional behavior of minimum temperatures in Switzerland for the period 1979–1993 , 1996 .

[23]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[24]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[25]  James W. Hurrell,et al.  Elevation Dependency of the Surface Climate Change Signal: A Model Study , 1997 .

[26]  Martin Beniston,et al.  VARIATIONS OF SNOW DEPTH AND DURATION IN THE SWISS ALPS OVER THE LAST 50 YEARS: LINKS TO CHANGES IN LARGE-SCALE CLIMATIC FORCINGS , 1997 .

[27]  B. Everitt,et al.  Analysis of longitudinal data , 1998, British Journal of Psychiatry.

[28]  V Chavez-Demoulin Bayesian inference for small-sample capture-recapture data. , 1999, Biometrics.

[29]  Peter Hall,et al.  Nonparametric Analysis of Temporal Trend When Fitting Parametric Models to Extreme­Value Data , 2000 .

[30]  Anthony C. Davison,et al.  Local likelihood smoothing of sample extremes , 2000 .

[31]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[32]  Francesco Pauli,et al.  Penalized likelihood inference in extreme value analyses , 2001 .

[33]  Martin Beniston,et al.  Changes in the anomalies of extreme temperature anomalies in the 20th century at Swiss climatological stations located at different latitudes and altitudes , 2001 .

[34]  Anthony C. Davison,et al.  Local models for exploratory analysis of hydrological extremes , 2002 .

[35]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[36]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .