Application of constrained generalized inverse to pattern classification

Abstract A constrained MSE procedure in the generalized inverse setting is presented. The procedure is motivated by Fisher's linear discriminant. The procedure is adaptive and tries to classify the means of the classes correctly and then vary the margin of this classification to achieve the least possible errors on the design set. The procedure was carried out on an example with very favorable results.

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  Earl E. Swartzlander,et al.  Introduction to Mathematical Techniques in Pattern Recognition , 1973 .

[3]  Masaaki Sibuya,et al.  Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods , 1972 .

[4]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[5]  A. Bjerhammar,et al.  Theory Of Errors And Generalized Matrix Inverses , 1973 .

[6]  M. Nashed Generalized Inverses, Normal Solvability, and Iteration for Singular Operator Equations , 1971 .

[7]  King-Sun Fu,et al.  An Extension of the Generalized Inverse Algorithm to Multiclass Pattern Classification , 1968, IEEE Trans. Syst. Sci. Cybern..

[8]  Fred W. Smith Design of minimum-error optimal classifiers for patterns from distributions with Gaussian tails , 1971, IEEE Trans. Inf. Theory.

[9]  G. Stewart Introduction to matrix computations , 1973 .

[10]  S. Yau,et al.  LEAST-MEAN-SQUARE APPROACH TO PATTERN CLASSIFICATION , 1972 .

[11]  D. W. Peterson,et al.  A method of finding linear discriminant functions for a class of performance criteria , 1966, IEEE Trans. Inf. Theory.

[12]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[13]  R. Penrose A Generalized inverse for matrices , 1955 .

[14]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[15]  N. Minamide,et al.  A Restricted Pseudoinverse and Its Application to Constrained Minima , 1970 .

[16]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[17]  R. L. Kashyap,et al.  An Algorithm for Linear Inequalities and its Applications , 1965, IEEE Trans. Electron. Comput..

[18]  William G. Wee,et al.  On feature selection in a class of distribution-free pattern classifiers , 1970, IEEE Trans. Inf. Theory.

[19]  Fred W. Smith,et al.  Small-sample optimality of design techniques for linear classifiers of Gaussian patterns , 1972, IEEE Trans. Inf. Theory.

[20]  H. Theil Principles of econometrics , 1971 .

[21]  Tzay Y. Young,et al.  Classification, Estimation and Pattern Recognition , 1974 .

[22]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[23]  M. Adrian Al-Alaoui,et al.  Some applications of generalized inverse to pattern recognition (Ph.D. Thesis abstr.) , 1976, IEEE Trans. Inf. Theory.

[24]  William G. Wee,et al.  Generalized Inverse Approach to Adaptive Multiclass Pattern Classification , 1968, IEEE Transactions on Computers.

[25]  R. Fisher Contributions to mathematical statistics , 1951 .

[26]  J. S. Koford,et al.  The use of an adaptive threshold element to design a linear optimal pattern classifier , 1966, IEEE Trans. Inf. Theory.

[27]  William G. Wee Generalized inverse approach to clustering, feature selecting, and classification , 1971, IEEE Trans. Inf. Theory.

[28]  Baxter F. Womack,et al.  An Adaptive Pattern Classification System , 1966, IEEE Trans. Syst. Sci. Cybern..

[29]  D. S. Tracy,et al.  Generalized Inverse Matrices: With Applications to Statistics , 1971 .

[30]  S. R. Searle Generalized Inverse Matrices , 1971 .

[31]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[33]  G. Sebestyen,et al.  An Algorithm for Non-Parametric Pattern Recognition , 1966, IEEE Trans. Electron. Comput..