Data Assimilation via Error Subspace Statistical Estimation.

Abstract Identical twin experiments are utilized to assess and exemplify the capabilities of error subspace statistical estimation (ESSE). The experiments consists of nonlinear, primitive equation–based, idealized Middle Atlantic Bight shelfbreak front simulations. Qualitative and quantitative comparisons with an optimal interpolation (OI) scheme are made. Essential components of ESSE are illustrated. The evolution of the error subspace, in agreement with the initial conditions, dynamics, and data properties, is analyzed. The three-dimensional multivariate minimum variance melding in the error subspace is compared to the OI melding. Several advantages and properties of ESSE are discussed and evaluated. The continuous singular value decomposition of the nonlinearly evolving variations of variability and the possibilities of ESSE for dominant process analysis are illustrated and emphasized.

[1]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[2]  E. Lorenz A study of the predictability of a 28-variable atmospheric model , 1965 .

[3]  Ralph Shapiro,et al.  Smoothing, filtering, and boundary effects , 1970 .

[4]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[5]  R. Shapiro The Use of Linear Filtering as a Parameterization of Atmospheric Diffusion , 1971 .

[6]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[7]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[8]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73 , 1976 .

[9]  R. Davis,et al.  Techniques for statistical analysis and prediction of geophysical fluid systems , 1977 .

[10]  R. Temam,et al.  Structure of the set of stationary solutions of the navier-stokes equations , 1977 .

[11]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[12]  Cornelius Leondes,et al.  Statistically Linearized Estimation of Reentry Trajectories , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[13]  R. Beardsley,et al.  On estuarine and continen-tal shelf circulation in the Middle Atlantic Bight , 1981 .

[14]  Michael Ghil,et al.  Dynamic Meteorology: Data Assimilation Methods , 1981 .

[15]  B. Weare,et al.  Examples of Extended Empirical Orthogonal Function Analyses , 1982 .

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  Michael Ghil,et al.  An efficient algorithm for estimating noise covariances in distributed systems , 1985 .

[18]  Stephen E. Cohn,et al.  A Kalman filter for a two-dimensional shallow-water model, formulation and preliminary experiments , 1985 .

[19]  An Objective Analysis of the POLYMODE Local Dynamics Experiment. Part I: General Formalism and Statistical Model Selection , 1986 .

[20]  Norman A. Phillips,et al.  The spatial statistics of random geostrophic modes and first-guess errors , 1986 .

[21]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[22]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[23]  Allan R. Robinson,et al.  Analysis models for the estimation of oceanic fields , 1987 .

[24]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[25]  K. Hasselmann PIPs and POPs - A general formalism for the reduction of dynamical systems in terms of Principal Interaction Patterns and Principal Oscillation Patterns , 1987 .

[26]  Hans von Storch,et al.  Principal oscillation pattern analysis of the 30‐ to 60‐day oscillation in general circulation model equatorial troposphere , 1988 .

[27]  C. Wunsch Transient tracers as a problem in control theory , 1988 .

[28]  Glen Gawarkiewicz,et al.  The morphology of shelfbreak eddies , 1988 .

[29]  D. Catlin Estimation, Control, and the Discrete Kalman Filter , 1988 .

[30]  I. A. Boguslavskiĭ,et al.  Filtering and control , 1988 .

[31]  Cécile Penland,et al.  Random Forcing and Forecasting Using Principal Oscillation Pattern Analysis , 1989 .

[32]  Michael Ghil,et al.  Meteorological data assimilation for oceanographers. Part I: Description and theoretical framework☆ , 1989 .

[33]  Wayne G. Leslie,et al.  Data assimilation and dynamical interpolation in GULFCAST experiments , 1989 .

[34]  Robert N. Miller,et al.  A Kalman Filter Analysis of Sea Level Height in the Tropical Pacific , 1989 .

[35]  Bruce J. West,et al.  Geophysical attractors may be only colored noise , 1991 .

[36]  Roger Temam,et al.  Approximation of attractors, large eddy simulations and multiscale methods , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[37]  R. Daley Atmospheric Data Analysis , 1991 .

[38]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[39]  Stephen E. Cohn,et al.  The Behavior of Forecast Error Covariances for a Kalman Filter in Two Dimensions , 1991 .

[40]  B. Farrell,et al.  An Adjoint Method for Obtaining the Most Rapidly Growing Perturbation to Oceanic Flows , 1992 .

[41]  R. Daley Estimating Model-Error Covariances for Application to Atmospheric Data Assimilation , 1992 .

[42]  Catherine A. Smith,et al.  Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies , 1992 .

[43]  R. Daley The Lagged Innovation Covariance: A Performance Diagnostic for Atmospheric Data Assimilation , 1992 .

[44]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Bibliography , 1992 .

[45]  A. Lorenc Iterative analysis using covariance functions and filters , 1992 .

[46]  R. Daley Forecast-error statistics for homogeneous and inhomogeneous observation networks , 1992 .

[47]  H. Storch,et al.  Normal modes of the atmosphere as estimated by principal oscillation patterns and derived from quasigeostrophic theory , 1992 .

[48]  A New State Estimation Method For A Quantized Stochastic Sound System Based On A Generalized Statistical Linearization , 1993 .

[49]  S. Cohn Dynamics of Short-Term Univariate Forecast Error Covariances , 1993 .

[50]  T. Palmer Extended-range atmospheric prediction and the Lorenz model , 1993 .

[51]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[52]  N. Gamage,et al.  Comparative Analysis of Low-Level Cold Fronts: Wavelet, Fourier, and Empirical Orthogonal Function Decompositions , 1993 .

[53]  A. Osborne,et al.  Simultaneous occurence of low-dimensional chaos and colored random noise in nonlinear physical systems , 1993 .

[54]  Franco Molteni,et al.  Ensemble prediction using dynamically conditioned perturbations , 1993 .

[55]  Michael Ghil,et al.  Dynamical Properties of Error Statistics in a Shallow-Water Model , 1993 .

[56]  G. Evensen Inverse methods and data assimilation in nonlinear ocean models , 1994 .

[57]  Michael Ghil,et al.  Tracking Atmospheric Instabilities with the Kalman Filter. Part 1: Methodology and One-Layer Resultst , 1994 .

[58]  Andrew M. Moore,et al.  Using Adjoint Models for Stability and Predictability Analysis , 1994 .

[59]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[60]  R. Todling,et al.  Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .

[61]  P. Malanotte‐Rizzoli,et al.  An approximate Kaiman filter for ocean data assimilation: An example with an idealized Gulf Stream model , 1995 .

[62]  Nori,et al.  “ An Approximate Kalman Filter for Ocean Data Assimilation ; An Example with an Idealized Gulf Stream Modelt , 1995 .

[63]  Ronald M. Errico,et al.  Mesoscale Predictability and the Spectrum of Optimal Perturbations , 1995 .

[64]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[65]  Hernan G. Arango,et al.  Real-time operational forecasting on shipboard of the Iceland-Faeroe frontal variability , 1996 .

[66]  Jeffrey L. Anderson,et al.  Selection of Initial Conditions for Ensemble Forecasts in a Simple Perfect Model Framework , 1996 .

[67]  Allan R. Robinson,et al.  Physical processes, field estimation and an approach to interdisciplinary ocean modeling , 1996 .

[68]  Brian F. Farrell,et al.  Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .

[69]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[70]  Allan R. Robinson,et al.  Real-time regional forecasting , 1996 .

[71]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[72]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[73]  Philippe Courtier,et al.  Sensitivity of forecast errors to initial conditions , 1996 .

[74]  Allan R. Robinson,et al.  An interdisciplinary ocean prediction system: Assimilation strategies ana structured data models , 1996 .

[75]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model, II: Analysis and implementation , 1997 .

[76]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[77]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[78]  Pierre F. J. Lermusiaux,et al.  Estimation and study of mesoscale variability in the strait of Sicily , 1999 .

[79]  B. Cornuelle,et al.  Forecasts from fits of frontal fluctuations , 1999 .

[80]  Petros,et al.  Generalized Stability Theory . Part I : Autonomous Operators , 2022 .