First-row transitional-metal oxalate resists for EUV

Abstract. We have developed inorganic oxalate compounds [PPh3(CH2Ph)][M(2,2′-bipyridine)n(oxalate)(3-n)] (n=1, 2, 3; M = Co, Fe, Cr) capable of acting as negative-tone extreme ultraviolet (EUV) resists. Two important trends are observed: (1) sensitivity increases with the number of oxalate ligands; (2) Cobalt and iron complexes exhibit greater sensitivity than analogous chromium complexes. Lithographic studies of the most successful compound, [PPh3(CH2Ph)][Co(2,2′-bipyridine)(oxalate)2], show that it can consistently achieve 20 nm h/p lines at doses approaching 30 mJ/cm2. Infrared, paramagnetic nuclear magnetic resonance, and cyclic voltammetric studies of this compound show that the reaction products of the EUV photochemistry are Co(II)(2,2′-bipyridine)(oxalate) and [PPh3(CH2Ph)]2(oxalate) formed from the decomposition of one of the oxalate ligands into two equivalents each of carbon dioxide and electrons.

[1]  A. M. Sargeson,et al.  Potassium Tetraoxalato‐Di‐μ‐Hydroxo‐Dicobaltate(III) 3‐Hydrate (Durrant's Salt) and Sodium Tetraoxalato‐Di‐μ‐Hydroxodicobaltate(III) 5‐Hydrate , 2007 .

[2]  K. Nakamoto,et al.  Comprar Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry | Kazuo Nakamoto | 9780471744931 | Wiley , 2009 .

[3]  Yasin Ekinci,et al.  EUV resists based on tin-oxo clusters , 2014, Advanced Lithography.

[4]  Ja Broomhead,et al.  The Preparation and Resolution of the Bis(oxalato)-2,2'-bipyridinechromate(III) and Bis(oxalato)-1,10-phenanthrolinechromate(III) Ions , 1962 .

[5]  Amrit Narasimhan,et al.  Mechanisms of EUV exposure: electrons and holes , 2017, Advanced Lithography.

[6]  E. L. Simmons,et al.  Solid-state photochemical reactions of transition-metal coordination compounds , 1971 .

[7]  Yasin Ekinci,et al.  Evaluation of EUV resist performance with interference lithography towards 11 nm half-pitch and beyond , 2013, Advanced Lithography.

[8]  Yasin Ekinci,et al.  Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm) , 2014 .

[9]  P. D. Fleischauer,et al.  Photochemistry of transition-metal coordination compounds , 1968 .

[10]  Allen J. Bard,et al.  Electrogenerated Chemiluminescence. 30. Electrochemical Oxidation of Oxalate Ion in the Presence of Luminescers in Acetonitrile Solutions , 1977 .

[11]  A. L. Poznyak,et al.  Photochemical Reactions of Ligands in Transition‐Metal Complexes , 1988 .

[12]  C. Mack,et al.  Stochastic exposure kinetics of extreme ultraviolet photoresists: simulation study , 2011 .

[13]  Mark Neisser,et al.  Low-line edge roughness extreme ultraviolet photoresists of organotin carboxylates , 2015 .

[14]  C. A. Parker,et al.  Photodecomposition of Complex Oxalates—Some Preliminary Experiments by Flash Photolysis , 1959 .

[15]  Hoseop Yun,et al.  1D and 2D Cobalt(II) Coordination Polymers, Co(ox)(en): Synthesis, Structures and Magnetic Properties , 2014 .

[16]  Kent R. Mann,et al.  Electrochemical Investigation of Ruthenium and Osmium Oligothiophene Complexes: How Does Metal Binding Affect the Oligothiophene π-System? , 1997 .

[17]  D. Hendrickson,et al.  Magnetic exchange interactions in transition metal dimers. IV. High-spin cobalt(II)-2,2',2''-triaminotriethylamine complexes with oxalate inner-sphere and cyanate, thiocyanate, chloride, and azide outer-sphere bridges , 1975 .

[18]  Amrit Narasimhan,et al.  Reactivity of metal-oxalate EUV resists as a function of the central metal , 2017, Advanced Lithography.

[19]  R. Murugesan,et al.  Electronic and molecular structure of tris(2,2'-bipyridine)chromium(3+) , 1987 .

[20]  Yasin Ekinci,et al.  Platinum and palladium oxalates: positive-tone extreme ultraviolet resists , 2015 .

[21]  J. Thackeray Materials challenges for sub-20-nm lithography , 2011 .

[22]  Allen J. Bard,et al.  Electrogenerated Chemiluminescence. 30. Electrochemical Oxidation of Oxalate Ion in the Presence of Luminescers in Acetonitrile Solutions , 1977 .

[23]  Donatella Armentano,et al.  Bis and tris(oxalato)ferrate(III) complexes as precursors of polynuclear compounds , 2005 .

[24]  Yasin Ekinci,et al.  Organometallic carboxylate resists for extreme ultraviolet with high sensitivity , 2015 .

[25]  R. Brainard,et al.  Resolution, Line-Edge Roughness, Sensitivity Tradeoff, and Quantum Yield of High Photo Acid Generator Resists for Extreme Ultraviolet Lithography , 2011 .

[26]  M. Dwyer,et al.  Synthesis and resolution of heterochelate metal complexes of chromium(III) and cobalt(III) with the ligands 2,2'-bipyridine, 1,10-phenanthroline, and oxalate ion , 1968 .

[27]  R. S. Nyholm,et al.  681. Studies in co-ordination chemistry. Part XIII. Magnetic moments and bond types of transition-metal complexes , 1952 .

[28]  Marijana Jurić,et al.  The influence of metal centres on the exchange interaction in heterometallic complexes with oxalate-bridged cations. , 2017, Dalton transactions.

[29]  Brian Cardineau,et al.  Bismuth Resists for EUV Lithography , 2014 .

[30]  Douglas A. Keszler,et al.  Patterning chemistry of HafSOx resist , 2014, Advanced Lithography.

[31]  Markos Trikeriotis,et al.  Development of an inorganic photoresist for DUV, EUV, and electron beam imaging , 2010, Advanced Lithography.

[32]  Nobuyuki Tanaka,et al.  The Thermal Decomposition of Metal Oxalato Complexes , 1967 .