G/sup 2/ planar spiral cubic interpolation to a spiral

We show that two-point G/sup 2/ Hermite cubic spline interpolation to a smooth spiral is a spiral. Its unit tangent matches given unit tangents and its signed curvature matches given signed curvatures at end points of the given spiral. Spiral segments are useful in the design of fair curves and have the advantages that there are no unplanned curvature maxima, curvature minima, or inflection points, and that loops and cusps are impossible within a segment.

[1]  K G Baass,et al.  THE USE OF CLOTHOID TEMPLATES IN HIGHWAY DESIGN , 1984 .

[2]  Muhammad Sarfraz A rational cubic spline for the visualization of monotonic data , 2000, Comput. Graph..

[3]  M. Sakai Inflections and singularity on parametric rational cubic curves , 1997 .

[4]  Zulfiqar Habib,et al.  A rational cubic spline for the visualization of convex data , 2001, Proceedings Fifth International Conference on Information Visualisation.

[5]  Manabu Sakai,et al.  Osculatory interpolation , 2001, Comput. Aided Geom. Des..

[6]  D. Walton,et al.  Spiral arc spline approximation to a planar spiral , 1999 .

[7]  Muhammad Hussain,et al.  Local convexity preserving rational cubic spline curves , 1997, Proceedings. 1997 IEEE Conference on Information Visualization (Cat. No.97TB100165).

[8]  Manabu Sakai,et al.  Inflection points and singularities on planar rational cubic curve segments , 1999, Comput. Aided Geom. Des..

[9]  Dereck S. Meek,et al.  Planar spirals that match G2 Hermite data , 1998, Comput. Aided Geom. Des..

[10]  Paul R. Schmitt,et al.  Reactive path shaping :local path planning for autonomous mobile robots in aisles , 1996 .

[11]  Malcolm A. Sabin,et al.  High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..

[12]  M. Sarfraz,et al.  RATIONAL CUBICS AND CONICS REPRESENTATION: A PRACTICAL APPROACH , 1970 .

[13]  P. Hartman Closure of "The Highway Spiral for Combining Curves of Different Radii" , 1955 .

[14]  T. Hickerson Route location and design , 1967 .

[15]  Muhammad Sarfraz Some remarks on a rational cubic spline for the visualization of monotonic data , 2002, Comput. Graph..

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .