Bijective Arithmetic Codings of Hyperbolic Automorphisms of the 2-Torus, and Binary Quadratic Forms
暂无分享,去创建一个
[1] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[2] R. Adler,et al. Entropy, a complete metric invariant for automorphisms of the torus. , 1967, Proceedings of the National Academy of Sciences of the United States of America.
[3] Nikita Sidorov,et al. Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems , 1998 .
[4] R. Adler,et al. SYMBOLIC DYNAMICS AND MARKOV PARTITIONS , 1996 .
[5] R. Bowen. Periodic points and measures for Axiom $A$ diffeomorphisms , 1971 .
[6] Richard Kenyon,et al. Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.
[7] W. Parry. On theβ-expansions of real numbers , 1960 .
[8] M. Denker. The central limit theorem for dynamical systems , 1989 .
[9] James T. Campbell,et al. When are two elements of GL(2,Z) similar? , 1991 .
[10] Underwood Dudley. Elementary Number Theory , 1978 .
[11] S. L. Borgne. Dynamique symbolique et proprietes stochastiques des automorphismes du tore : cas hyperbolique et quasi-hyperbolique , 1997 .
[12] G. Watson,et al. Integral Quadratic Forms , 1960 .
[13] Anne Bertrand-Mathis. Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .
[14] Boris Solomyak,et al. Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.