Synchronous R-NSGA-II: An Extended Preference-Based Evolutionary Algorithm for Multi-Objective Optimization

Classical evolutionary multi-objective optimization algorithms aim at finding an approx- imation of the entire set of Pareto optimal solutions. By considering the preferences of a decision maker within evolutionary multi-objective optimization algorithms, it is possible to focus the search only on those parts of the Pareto front that satisfy his/her preferences. In this paper, an extended preference-based evolutionary algorithm has been proposed for solving multi-objective optimiza- tion problems. Here, concepts from an interactive synchronous NIMBUS method are borrowed and combined with the R-NSGA-II algorithm. The proposed synchronous R-NSGA-II algorithm uses preference information provided by the decision maker to find only desirable solutions satis- fying his/her preferences on the Pareto front. Several scalarizing functions are used simultaneously so the several sets of solutions are obtained from the same preference information. In this paper, the experimental-comparative investigation of the proposed synchronous R-NSGA-II and original R-NSGA-II has been carried out. The results obtained are promising.

[1]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[2]  Olga Kurasova,et al.  Investigation of human factors while solving multiple criteria optimization problems in computer network , 2009 .

[3]  Kaisa Miettinen,et al.  On Interactive Multiobjective Optimization with NIMBUS in Chemical Process Design , 2005 .

[4]  Fanyong Meng,et al.  An Approach to Interval-Valued Hesitant Fuzzy Multi-Attribute Decision Making with Incomplete Weight Information Based on Hybrid Shapley Operators , 2014, Informatica.

[5]  Salvatore Greco,et al.  Interactive Evolutionary Multiobjective Optimization using Dominance-based Rough Set Approach , 2010, IEEE Congress on Evolutionary Computation.

[6]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[7]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[8]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[9]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[10]  Rubén Saborido,et al.  A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm , 2015, J. Glob. Optim..

[11]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[12]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[13]  Susana Cecilia Esquivel Evolutionary algorithms for solving multi-objetive problems . Carlos A. Coello Coello, David A. van Veldhuizen and Gary R., Lamont , 2002 .

[14]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[15]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls , 2014, Eur. J. Oper. Res..

[16]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[17]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[18]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[19]  Kalyanmoy Deb,et al.  Towards estimating nadir objective vector using evolutionary approaches , 2006, GECCO.

[20]  Hanning Chen,et al.  Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm , 2011 .

[21]  Xiaodong Li,et al.  Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization algorithm , 2010, IEEE Congress on Evolutionary Computation.

[22]  Xiaodong Li,et al.  A new performance metric for user-preference based multi-objective evolutionary algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[23]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[24]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[25]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[26]  Tapabrata Ray,et al.  A Decomposition Based Evolutionary Algorithm for Many Objective Optimization with Systematic Sampling and Adaptive Epsilon Control , 2013, EMO.

[27]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[28]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[29]  Kaisa Miettinen,et al.  Interactive multiobjective optimization system WWW-NIMBUS on the Internet , 2000, Comput. Oper. Res..

[30]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[31]  Kaisa Miettinen,et al.  A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE , 2011, EMO.

[32]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[33]  Carlos A. Coello Coello,et al.  Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems , 2014, Inf. Sci..

[34]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[35]  Theodor J. Stewart,et al.  Interactive multiobjective optimization with NIMBUS for decision making under uncertainty , 2014, OR Spectr..

[36]  Carlos A. Coello Coello,et al.  Some techniques to deal with many-objective problems , 2009, GECCO '09.

[37]  Kalyanmoy Deb,et al.  Evolutionary multi-criterion optimization , 2010, GECCO '10.

[38]  Pilar Martínez Ortigosa,et al.  Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm , 2013 .

[39]  Shouzhen Zeng,et al.  A Projection Method for Multiple Attribute Group Decision Making with Intuitionistic Fuzzy Information , 2013, Informatica.

[40]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[41]  Vesa Ojalehto,et al.  An interactive multi-objective approach to heat exchanger network synthesis , 2010, Comput. Chem. Eng..

[42]  Kaisa Miettinen,et al.  Global formulation for interactive multiobjective optimization , 2011, OR Spectr..

[43]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[44]  Kalyanmoy Deb,et al.  Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches , 2010, IEEE Transactions on Evolutionary Computation.

[45]  Kaisa Miettinen,et al.  Multiobjective optimization of an ultrasonic transducer using NIMBUS. , 2006, Ultrasonics.

[46]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[47]  U. Aickelin,et al.  Parallel Problem Solving from Nature - PPSN VIII , 2004, Lecture Notes in Computer Science.

[48]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[49]  Seyed Hossein Razavi Hajiagha,et al.  Decision Making with Unknown Data: Development of ELECTRE Method Based on Black Numbers , 2014, Informatica.

[50]  Olga Kurasova,et al.  Visualization of Pareto Front Points when Solving Multi-objective Optimization Problems , 2013, Inf. Technol. Control..

[51]  Lorraine R. Gardiner,et al.  A comparison of two reference point methods in multiple objective mathematical programming , 2003, Eur. J. Oper. Res..

[52]  David W. Corne,et al.  Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization , 2007, EMO.

[53]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[54]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[55]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[56]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[57]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[58]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[59]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[60]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[61]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[62]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[63]  J. Paris Performance assessment. , 1998, Journal of public health medicine.

[64]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[65]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[66]  Tapabrata Ray,et al.  A steady state decomposition based quantum genetic algorithm for many objective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[67]  Kalyanmoy Deb,et al.  I-MODE: An Interactive Multi-objective Optimization and Decision-Making Using Evolutionary Methods , 2007, EMO.

[68]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[69]  Kalyanmoy Deb,et al.  A review of hybrid evolutionary multiple criteria decision making methods , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[70]  Kalyanmoy Deb,et al.  Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls , 2012, 2012 IEEE Congress on Evolutionary Computation.

[71]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[72]  Vesa Ojalehto,et al.  Interactive Software for Multiobjective Optimization: IND-NIMBUS , 2007 .

[73]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..