Understudied regions and messy taxonomy: Geography, not taxonomy, is the best predictor for genetic divergence of the Poecilimon bosphoricus species group

The complex and dynamic history of the Anatolian Peninsula during the Pleistocene set the stage for species diversification. However, the evolutionary history of biodiversity in the region is shrouded by the challenges of studying species divergence in the recent, dynamic past. Here, we study the Poecilimon bosphoricus (PB) species group to understand how the bush crickets' diversification and the regions' complex history are coupled. Specifically, using sequences of two mitochondrial and two nuclear gene segments from over 500 individuals for a comprehensive set of taxa with extensive geographic sampling, we infer the phylogenetic and geographic setting of species divergence. In addition, we use the molecular data to examine hypothesized species boundaries that were defined morphologically. Our analyses of the timing of divergence confirm the recent origin of the PB complex, indicating its diversification coincided with the dynamic geology and climate of the Pleistocene. Moreover, the geography of divergence suggests a history of fragmentation followed by admixture of populations, suggestive of a ring species. However, the evolutionary history based on genetic divergence conflicts with morphologically defined species boundaries raising the prospects that incipient species divergences may be relatively ephemeral. As such, the morphological differences observed in the PB complex may not to be sufficient to have prevented homogenizing gene flow in the past. Alternatively, with the recent origin of the complex, the lack of time for lineage sorting may underlie the discord between morphological species boundaries and genetic differentiation. Under either hypothesis, geography—not taxonomy—is the best predictor of genetic divergence.

[1]  B. Çıplak,et al.  Taxonomy of the rear-edge populations: the case of genus Anterastes (Orthoptera, Tettigoniidae) , 2023, Organisms Diversity & Evolution.

[2]  K. Heller,et al.  Origin, evolution and systematics of the genus Poecilimon (Orthoptera: Tettigoniidae)—An outburst of diversification in the Aegean area , 2023, Systematic Entomology.

[3]  M. Dawson,et al.  Comparative phylogeography in the genomic age: Opportunities and challenges , 2022, Journal of Biogeography.

[4]  L. Knowles,et al.  Geographical isolation versus dispersal: Relictual alpine grasshoppers support a model of interglacial diversification with limited hybridization , 2021, Molecular ecology.

[5]  J. Alroy,et al.  The legacy of Eastern Mediterranean mountain uplifts: rapid disparity of phylogenetic niche conservatism and divergence in mountain vipers , 2021, BMC ecology and evolution.

[6]  L. Knowles,et al.  Dispersal barriers and opportunities drive multiple levels of phylogeographic concordance in the Southern Alps of New Zealand , 2020, Molecular ecology.

[7]  C. Hemp,et al.  Hyperdiverse songs, duetting, and the roles of intra- and intersexual selection in the acoustic communication of the genus Eurycorypha (Orthoptera: Tettigonioidea, Phaneropterinae) , 2020, Organisms Diversity & Evolution.

[8]  J. Montoya-Burgos,et al.  Harmonizing hybridization dissonance in conservation , 2020, Communications Biology.

[9]  B. Çıplak,et al.  Evolution, characterization and phylogenetic utility of ITS2 gene in Orthoptera and some Polyneoptera: Highly variable at the order level and highly conserved at the species level. , 2020, Zootaxa.

[10]  Robert K. Colwell,et al.  Humboldt’s enigma: What causes global patterns of mountain biodiversity? , 2019, Science.

[11]  A. Papadopoulou,et al.  Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex , 2019, Molecular ecology.

[12]  L. Knowles,et al.  Genomic evidence of survival near ice sheet margins for some, but not all, North American trees , 2019, Proceedings of the National Academy of Sciences.

[13]  J. Singarayer,et al.  Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution , 2019, Earth-Science Reviews.

[14]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[15]  S. Kaya,et al.  Possibility of numt co-amplification from gigantic genome of Orthoptera: testing efficiency of standard PCR protocol in producing orthologous COI sequences , 2018, Heliyon.

[16]  C. Teyssier,et al.  Rapid late Miocene surface uplift of the Central Anatolian Plateau margin , 2018, Earth and Planetary Science Letters.

[17]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[18]  X. Xia DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution , 2018, Molecular biology and evolution.

[19]  L. Knowles,et al.  Distributional shifts – not geographic isolation – as a probable driver of montane species divergence , 2017 .

[20]  S. Litvinchuk,et al.  The Near East as a cradle of biodiversity: A phylogeography of banded newts (genus Ommatotriton) reveals extensive inter- and intraspecific genetic differentiation. , 2017, Molecular phylogenetics and evolution.

[21]  S. Kaya,et al.  The Anatolio‐Balkan phylogeographic fault: a snapshot from the genus Isophya (Orthoptera, Tettigoniidae) , 2017 .

[22]  S. Kaya,et al.  Phylogeography and taxonomy of the Psorodonotus caucasicus (Orthoptera, Tettigoniidae) group: independent double invasion of the Balkans from the Caucasus , 2017 .

[23]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[24]  S. Kaya,et al.  Budding speciation via peripheral isolation: the Psorodonotus venosus (Orthoptera, Tettigoniidae) species group example , 2016 .

[25]  L. Knowles,et al.  Contrasting support for alternative models of genomic variation based on microhabitat preference: species‐specific effects of climate change in alpine sedges , 2016, Molecular ecology.

[26]  L. Knowles,et al.  Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses , 2016, Proceedings of the National Academy of Sciences.

[27]  L. Knowles,et al.  The Species versus Subspecies Conundrum: Quantitative Delimitation from Integrating Multiple Data Types within a Single Bayesian Approach in Hercules Beetles. , 2016, Systematic biology.

[28]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[29]  Dan G. Bock,et al.  Hybridization and extinction , 2016, Evolutionary applications.

[30]  R. D. Zhantiev,et al.  Acoustic signals of the bush-crickets of tribe Barbitistini (Orthoptera, Tettigoniidae, Phaneropterinae) from Eastern Europe and Caucasus. II. Leptophyes Fieber, 1853, Euconocercus Bey-Bienko, 1950,Barbitistes Charpentier, 1825, Polysarcus Fieber, 1853 , 2015 .

[31]  B. Hausdorf,et al.  Phylogeography of the land snail genus Circassina (Gastropoda: Hygromiidae) implies multiple Pleistocene refugia in the western Caucasus region. , 2015, Molecular phylogenetics and evolution.

[32]  S. Kaya,et al.  Mountainous genus Anterastes (Orthoptera, Tettigoniidae): autochthonous survival across several glacial ages via vertical range shifts , 2015 .

[33]  C. Hemp,et al.  Acoustic Communication in Phaneropterinae (Tettigonioidea) - A Global Review with Some New Data , 2015 .

[34]  S. Kaya,et al.  Contribution to the taxonomy of Poecilimon bosphoricus species group (Orthoptera: Phaneropteridae): two new species from its core range. , 2015, Zootaxa.

[35]  D. Lunt,et al.  The contribution of Anatolia to European phylogeography: the centre of origin of the meadow grasshopper, Chorthippus parallelus , 2014 .

[36]  M. Dynesius,et al.  PERSISTENCE OF WITHIN‐SPECIES LINEAGES: A NEGLECTED CONTROL OF SPECIATION RATES , 2014, Evolution; international journal of organic evolution.

[37]  S. Kaya,et al.  Integrated systematics of the Poecilimon luschani species group (Orthoptera, Tettigoniidae): radiation as a chain of populations in a small heterogeneous area , 2013 .

[38]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[39]  M. Ünal Validation of four species of Poecilimon Fischer (Orthoptera: Tettigoniidae: Phaneropterinae) , 2012 .

[40]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[41]  Luke J. Harmon,et al.  Goldilocks Meets Santa Rosalia: An Ephemeral Speciation Model Explains Patterns of Diversification Across Time Scales , 2012, Evolutionary Biology.

[42]  K. Heller,et al.  Poecilimon bosphoricus group (Orthoptera, Phaneropterinae): iteration of morpho-taxonomy by song characteristics , 2012 .

[43]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[44]  Erol Akçay,et al.  Turkey's globally important biodiversity in crisis , 2011 .

[45]  Thibaut Jombart,et al.  adegenet 1.3-1: new tools for the analysis of genome-wide SNP data , 2011, Bioinform..

[46]  M. Ünal Phaneropterinae (Orthoptera: Tettigoniidae) from Turkey and the Middle East II , 2010 .

[47]  Y. Yılmaz,et al.  Morphotectonic development of the Marmara Region , 2010 .

[48]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[49]  B. Misof,et al.  Secondary structure and phylogenetic analysis of the internal transcribed spacers 1 and 2 of bush crickets (Orthoptera: Tettigoniidae: Barbitistini): ITS secondary structure and phylogeny of bush crickets , 2009 .

[50]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[51]  T. Jombart adegenet: a R package for the multivariate analysis of genetic markers , 2008, Bioinform..

[52]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[53]  R. Petit,et al.  Conserving biodiversity under climate change: the rear edge matters. , 2005, Ecology letters.

[54]  D. Hosken,et al.  Sexual selection and genital evolution. , 2004, Trends in ecology & evolution.

[55]  B. Çıplak Systematics, phylogeny and biogeography of Anterastes (Orthoptera, Tettigoniidae, Tettigoniinae): evolution within a refugium , 2004 .

[56]  A. Elmas Late Cenozoic tectonics and stratigraphy of northwestern Anatolia: the effects of the North Anatolian Fault to the region , 2003 .

[57]  C. Yaltırak,et al.  Characteristic features of the North Anatolian Fault in the eastern Marmara region and its tectonic evolution , 2002 .

[58]  L. Rowe,et al.  CORRELATED EVOLUTION OF MALE AND FEMALE MORPHOLOGIES IN WATER STRIDERS , 2002, Evolution; international journal of organic evolution.

[59]  E. Bozkurt Neotectonics of Turkey – a synthesis , 2001 .

[60]  L. Knowles TESTS OF PLEISTOCENE SPECIATION IN MONTANE GRASSHOPPERS (GENUS MELANOPLUS) FROM THE SKY ISLANDS OF WESTERN NORTH AMERICA , 2000, Evolution; international journal of organic evolution.

[61]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[62]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[63]  G. Arnqvist Comparative evidence for the evolution of genitalia by sexual selection , 1998, Nature.

[64]  D. R. Ragge,et al.  The Songs of the Grasshoppers and Crickets of Western Europe , 1998 .

[65]  S. Aljanabi,et al.  Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. , 1997, Nucleic acids research.

[66]  William G. Eberhard,et al.  Sexual Selection And Animal Genitalia , 1985 .

[67]  D. Chobanov,et al.  Phylogeography of the Poecilimon ampliatus species group (Orthoptera: Tettigoniidae) in the context of the Pleistocene glacial cycles and the origin of the only thelytokous parthenogenetic phaneropterine bush-cricket , 2021, Arthropod Systematics & Phylogeny.

[68]  D. Hillis,et al.  The Multispecies Coalescent Over-splits Species in the Case of Geographically Widespread Taxa. , 2019, Systematic biology.

[69]  S. Kaya,et al.  Phylogeography of the Poecilimon luschani species group (Orthoptera, Tettigoniidae): a radiation strictly correlated with climatic transitions in the Pleistocene , 2015 .

[70]  S. Carranza,et al.  Cryptic diversity within the Anatololacerta species complex (Squamata: Lacertidae) in the Anatolian Peninsula: evidence from a multi-locus approach. , 2015, Molecular phylogenetics and evolution.

[71]  F. Batuk,et al.  Late Quaternary evolution of the Çanakkale Strait region (Dardanelles, NW Turkey): implications of a major erosional event for the postglacial Mediterranean-Marmara Sea connection , 2010 .

[72]  T. Michael,et al.  METHODOLOGY ARTICLE Open Access , 2009 .