Space-quest, experiments with quantum entanglement in space

Quantumentanglement is, according to Erwin Schrodinger in 1935, the essence of quantumphysics. It inspires fundamental questions about the principles of nature. By testing the entanglement of particles,we are able to ask fundamental questions about realism and locality in nature. Local realismimposes certain constraints in statistical correlations ofmeasurements onmulti-particle systems. Quantummechanics, however, predicts that entangled systems havemuch stronger than classical correlations that are independent of the distance between the particles and are not explicablewith classical physics.

[1]  M. Fejer,et al.  Differential phase shift quantum key distribution experiment over 105 km fibre , 2005, quant-ph/0507110.

[2]  Nan Li,et al.  Experimental Free-Space Distribution of Entangled Photon Pairs over a Noisy Ground Atmosphere of 13km , 2004 .

[3]  M. Toyoshima,et al.  Results from Phase-1, Phase-2 and Phase-3 Kirari Optical Communication Demonstration Experiments with the NICT optical ground station (KODEN) , 2007 .

[4]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[5]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[8]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[9]  J. Rarity,et al.  Ground to satellite secure key exchange using quantum cryptography , 2002 .

[10]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[11]  N. Perlot,et al.  Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station Oberpfaffenhofen (OGS-OP) , 2007, SPIE LASE.

[12]  Walter R. Leeb,et al.  Satellite-based quantum communication terminal employing state-of-the-art technology , 2005 .

[13]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[14]  Giuliano Scarcelli,et al.  Distant Clock Synchronization Using Entangled Photon Pairs , 2004 .

[15]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[16]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[17]  Walter R. Leeb,et al.  Proof-of-concept experiments for quantum physics in space , 2003, SPIE Optics + Photonics.

[18]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[19]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[20]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[21]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[22]  Giampiero Naletto,et al.  Very fast photon counting photometers for astronomical applications: from QuantEYE to AquEYE , 2007, SPIE Optics + Optoelectronics.

[23]  Xuemin Shen,et al.  Architecture and protocols of the future European quantum key distribution network , 2008, Secur. Commun. Networks.

[24]  Anthony J Leggett,et al.  Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem , 2006 .

[25]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[26]  Philip Michael Gorman Practical free-space quantum key distribution , 2010 .

[27]  P R Tapster,et al.  Quantum cryptography: A step towards global key distribution , 2002, Nature.