Semantic Congruence Alters Functional Connectivity during Olfactory-Visual Perception

Previous research has shown that humans struggle to interpret multiple perceptual signals when the information provided by these signals is incongruent. In the context of olfactory-visual integration, behavioral and neuronal differences in response to congruent and incongruent stimulus pairs have been established. Here, we explored functional connectivity of the human brain with regard to the perception of congruent and incongruent food stimuli. Participants were simultaneously presented olfactory and visual stimuli of 4 different food objects, 2 healthy and 2 unhealthy objects. Stimulus pairs were grouped into "congruent" (olfactory and visual presentation of the same object), "semi-congruent" (stimuli of similar "healthiness"), and "incongruent" (healthy-unhealthy stimulus combination). Using functional magnetic resonance imaging and psychophysiological interaction (PPI) analyses, we revealed part of a neural network, the nodes of which show differential connectivity depending on the level of congruency of the presented stimulus combinations. This network relies strongly on, mostly left, inferior frontal gyrus. The analysis of such network transcends standard subtractive designs and indicates the need for more detailed formulations of neuronal models and increased specificity in functional imaging.

[1]  Jessica Freiherr,et al.  Multisensory integration processing during olfactory‐visual stimulation—An fMRI graph theoretical network analysis , 2018, Human brain mapping.

[2]  R. Sijben,et al.  Cognitive Load Alters Neuronal Processing of Food Odors , 2017, Chemical senses.

[3]  J. Freiherr,et al.  Intramodal Olfactory Priming of Positive and Negative Odors in Humans Using Respiration-Triggered Olfactory Stimulation (RETROS). , 2016, Chemical senses.

[4]  Jonas K. Olofsson,et al.  A Designated Odor–Language Integration System in the Human Brain , 2014, The Journal of Neuroscience.

[5]  C. Koch,et al.  Information integration without awareness , 2014, Trends in Cognitive Sciences.

[6]  Jonas K. Olofsson,et al.  A cortical pathway to olfactory naming: evidence from primary progressive aphasia. , 2013, Brain : a journal of neurology.

[7]  Janina Seubert,et al.  Statistical localization of human olfactory cortex , 2013, NeuroImage.

[8]  Sterling C. Johnson,et al.  A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches , 2012, NeuroImage.

[9]  Jessica Freiherr,et al.  The 40-item Monell Extended Sniffin’ Sticks Identification Test (MONEX-40) , 2012, Journal of Neuroscience Methods.

[10]  Johan N Lundström,et al.  Central Processing of the Chemical Senses: an Overview. , 2011, ACS chemical neuroscience.

[11]  S. Boesveldt,et al.  Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments. , 2010, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[12]  P. Locher,et al.  Art on the plate: Effect of balance and color on attractiveness of, willingness to try and liking for food , 2010 .

[13]  A. Kleinschmidt,et al.  Anterior insula activations in perceptual paradigms: often observed but barely understood , 2010, Brain Structure and Function.

[14]  Roel M. Willems,et al.  Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language , 2009, NeuroImage.

[15]  Synnöve Carlson,et al.  Multisensory Integration of Sounds and Vibrotactile Stimuli in Processing Streams for “What” and “Where” , 2009, The Journal of Neuroscience.

[16]  L. Craighero,et al.  Broca's Area in Language, Action, and Music , 2009, Annals of the New York Academy of Sciences.

[17]  Lars Muckli,et al.  Cortical Plasticity of Audio–Visual Object Representations , 2008, Cerebral cortex.

[18]  I. Savic,et al.  Imaging of odor perception delineates functional disintegration of the limbic circuits in mesial temporal lobe epilepsy , 2008, NeuroImage.

[19]  H. Bülthoff,et al.  Multimodal similarity and categorization of novel, three-dimensional objects , 2007, Neuropsychologia.

[20]  J. Kaiser,et al.  Object Familiarity and Semantic Congruency Modulate Responses in Cortical Audiovisual Integration Areas , 2007, The Journal of Neuroscience.

[21]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[22]  M. Delgado,et al.  Reward‐Related Responses in the Human Striatum , 2007, Annals of the New York Academy of Sciences.

[23]  J. V. Verhagen The neurocognitive bases of human multimodal food perception: Consciousness , 2007, Brain Research Reviews.

[24]  Daniel Y. Kimberg,et al.  Neural correlates of cognitive efficiency , 2006, NeuroImage.

[25]  Mikko Sams,et al.  Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: An fMRI study at 3 T , 2006, NeuroImage.

[26]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[27]  Mark Jenkinson,et al.  Color of scents: chromatic stimuli modulate odor responses in the human brain. , 2005, Journal of neurophysiology.

[28]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[29]  Kathryn M. McMillan,et al.  N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies , 2005, Human brain mapping.

[30]  Mikko Sams,et al.  Processing of audiovisual speech in Broca's area , 2005, NeuroImage.

[31]  J. Cummings,et al.  The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment , 2005, Journal of the American Geriatrics Society.

[32]  B. Argall,et al.  Unraveling multisensory integration: patchy organization within human STS multisensory cortex , 2004, Nature Neuroscience.

[33]  R. Goebel,et al.  Integration of Letters and Speech Sounds in the Human Brain , 2004, Neuron.

[34]  Gian Luca Romani,et al.  Audio-visual crossmodal interactions in environmental perception: an fMRI investigation , 2004, Cognitive Processing.

[35]  David A. Kareken,et al.  Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex , 2004, NeuroImage.

[36]  I. Savic,et al.  Passive perception of odors and semantic circuits , 2004, Human brain mapping.

[37]  R. Henson,et al.  Neural response suppression, haemodynamic repetition effects, and behavioural priming , 2003, Neuropsychologia.

[38]  G. Pagnoni,et al.  Human Striatal Response to Salient Nonrewarding Stimuli , 2003, The Journal of Neuroscience.

[39]  R. Dolan,et al.  The Nose Smells What the Eye Sees Crossmodal Visual Facilitation of Human Olfactory Perception , 2003, Neuron.

[40]  C. Büchel,et al.  Broca's area and the language instinct , 2003, Nature Neuroscience.

[41]  G. Schoenbaum,et al.  Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning , 2003, Neuron.

[42]  D. Dubourdieu,et al.  The Color of Odors , 2001, Brain and Language.

[43]  G. Paxinos,et al.  Atlas of the Human Brain , 2000 .

[44]  N F Ramsey,et al.  Language area localization with three‐dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca's area , 1999, Annals of neurology.

[45]  J. Hollerman,et al.  Influence of reward expectation on behavior-related neuronal activity in primate striatum. , 1998, Journal of neurophysiology.

[46]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[47]  W. Schultz,et al.  Neuronal activity in monkey ventral striatum related to the expectation of reward , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  T. Robbins,et al.  Involvement of the amygdala in stimulus-reward associations: Interaction with the ventral striatum , 1989, Neuroscience.

[49]  L. Derogatis,et al.  The Brief Symptom Inventory: an introductory report , 1983, Psychological Medicine.

[50]  F. Colavita,et al.  A further investigation of visual dominance , 1979, Perception & psychophysics.

[51]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[52]  F. Colavita Human sensory dominance , 1974 .