Geochemical constraints on Eocene ignimbrite flare-up in the Urumieh-Dokhtar magmatic arc, northwestern Iran

[1]  M. Zattin,et al.  Late Paleocene – Middle Eocene magmatic flare-up in western Anatolia , 2022, Lithos.

[2]  Sun‐Lin Chung,et al.  Early Eocene high-Sr/Y magmas from the Urumieh-Dokhtar paleo-arc, Iran: Implications for the origin of high-flux events in magmatic arcs , 2022, Lithos.

[3]  H. Azizi,et al.  Does neoproterozoic-early paleozoic (570–530 Ma) basement of Iran belong to the cadomian orogeny? , 2022, Precambrian Research.

[4]  J. Chapman,et al.  The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems , 2021 .

[5]  P. Fiannacca,et al.  Crustal melting vs. fractionation of basaltic magmas: Part 1, The bipolar disorder of granite petrogenetic models , 2021 .

[6]  W. Mooney,et al.  The Geodynamic Evolution of Iran , 2021 .

[7]  W. Griffin,et al.  Prolonged magmatism and growth of the Iran-Anatolia Cadomian continental arc segment in Northern Gondwana , 2021, Lithos.

[8]  J. Cottle,et al.  Constraints from geochemistry, zircon U-Pb geochronology and Hf-Nd isotopic compositions on the origin of Cenozoic volcanic rocks from central Urumieh-Dokhtar magmatic arc, Iran , 2021 .

[9]  H. Azizi,et al.  Special issue on Mesozoic-Cenozoic tectono-magmatic evolution of Iran , 2020 .

[10]  S. Jamei,et al.  Petrogenesis of the Late Oligocene Takht batholith, Southeastern Iran: Implications for the Diachronous Nature of the Arabia–Eurasia Collision , 2020, Frontiers in Earth Science.

[11]  Zhiyong Zhang,et al.  Early Evolution of Himalayan Orogenic Belt and Generation of Middle Eocene Magmatism: Constraint From Haweng Granodiorite Porphyry in the Tethyan Himalaya , 2020, Frontiers in Earth Science.

[12]  J. Santos,et al.  Neotethyan Subduction Ignited the Iran Arc and Backarc Differently , 2020, Journal of Geophysical Research: Solid Earth.

[13]  Fatemeh Nouri,et al.  A new perspective on Cenozoic calc-alkaline and shoshonitic volcanic rocks, eastern Saveh (central Iran) , 2020, International Geology Review.

[14]  A. Fazlnia Geochemical and tectonic significance of Arbat alkali gabbro-monzonite-syenite intrusions, Urumieh–Dokhtar Magmatic Arc, Iran , 2019, Geological Quarterly.

[15]  F. Sarjoughian,et al.  Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas , 2019, Geoscience Frontiers.

[16]  M. Parada,et al.  Mantle driven cretaceous flare-ups in Cordilleran arcs , 2019, Lithos.

[17]  F. Schlunegger,et al.  Timing of the Arabia-Eurasia continental collision—Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq , 2018, Geology.

[18]  J. Hassanzadeh,et al.  Crust-mantle interaction inferred from the petrology and Sr-Nd-Pb isotope geochemistry of Eocene arc lavas from the Kahrizak Mountains, north-central Iran , 2018, Lithos.

[19]  H. Azizi,et al.  Zircon U-Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, central Iran: Partial melts of sub-continental lithospheric mantle and magmatic differentiation , 2018, Lithos.

[20]  A. Fazlnia Geochemistry and tectonic setting of the Chah-Bazargan sub-volcanic mafic dykes, south Sanandaj–Sirjan Zone (SSZ), Iran , 2018 .

[21]  Changqian Ma,et al.  Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: Timing and sources , 2018 .

[22]  P. Ulmer,et al.  Arc crust formation and differentiation constrained by experimental petrology , 2018, American Journal of Science.

[23]  V. Kamenetsky,et al.  Compositional characteristics and geodynamic significance of late Miocene volcanic rocks associated with the Chah Zard epithermal gold–silver deposit, southwest Yazd, Iran , 2018 .

[24]  D. Lentz,et al.  Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran: evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex , 2018, International Journal of Earth Sciences.

[25]  W. Griffin,et al.  Crustal Evolution of NW Iran: Cadomian Arcs, Archean Fragments and the Cenozoic Magmatic Flare-Up , 2017 .

[26]  Mohammad Reza Ghassemi,et al.  Revised version of the Cenozoic Collision along the Zagros Orogen, Insights from Cr-spinel and Sandstone Modal Analyses , 2017, Scientific Reports.

[27]  M. Khatib,et al.  Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt , 2017 .

[28]  S. Alirezaei,et al.  Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U–Pb zircon geochronology , 2017 .

[29]  T. Sisson,et al.  Voluminous arc dacites as amphibole reaction-boundary liquids , 2017, Contributions to Mineralogy and Petrology.

[30]  G. Stevens,et al.  Melt segregation and magma interactions during crustal melting: Breaking out of the matrix , 2016 .

[31]  Margarita López Martínez,et al.  The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran , 2016 .

[32]  D. Lentz,et al.  Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu–Au–Mo metallogenic potential , 2016 .

[33]  W. Krijgsman,et al.  Onset of Maikop sedimentation and cessation of Eocene arc volcanism in the Talysh Mountains, Azerbaijan , 2015, Special Publications.

[34]  P. DeCelles,et al.  Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera , 2015 .

[35]  Peter A. Cawood,et al.  Magmatic record of India-Asia collision , 2015, Scientific Reports.

[36]  A. Schmitt,et al.  Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile , 2015 .

[37]  J. Saleeby,et al.  The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs , 2015 .

[38]  K. Kuiper,et al.  Petrogenesis of mafic collision zone magmatism: The Armenian sector of the Turkish-Iranian Plateau , 2015 .

[39]  P. DeCelles,et al.  High-Volume Magmatic Events in Subduction Systems , 2015 .

[40]  F. Sarjoughian,et al.  Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar Magmatic Arc (Iran): Implications for source regions and magmatic evolution , 2014 .

[41]  O. Bachmann,et al.  Cumulate fragments in silicic ignimbrites: The case of the Snake River Plain , 2014 .

[42]  Yunpeng Dong,et al.  Laser-ICP-MS U–Pb zircon ages and geochemical and Sr–Nd–Pb isotopic compositions of the Niyasar plutonic complex, Iran: constraints on petrogenesis and tectonic evolution , 2014 .

[43]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[44]  M. Khatib,et al.  Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: Magma genesis and tectonic implications , 2013 .

[45]  M. Allen,et al.  Generation of Arc and Within-plate Chemical Signatures in Collision Zone Magmatism: Quaternary Lavas from Kurdistan Province, Iran , 2013 .

[46]  R. Shinjo,et al.  Magmatic and geodynamic evolution of Urumieh–Dokhtar basic volcanism, Central Iran: major, trace element, isotopic, and geochronologic implications , 2013 .

[47]  M. Berberian,et al.  Tectono‐Plutonic Episodes in Iran , 2013 .

[48]  M. Khatib,et al.  Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny , 2013 .

[49]  N. McQuarrie,et al.  Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction , 2013 .

[50]  A. Amini,et al.  Mesozoic basin inversion in Central Alborz, evidence from the evolution of Taleqan-Gajereh-Lar paleograben , 2012 .

[51]  F. Corfu A century of U-Pb geochronology: The long quest towards concordance , 2012 .

[52]  F. Sarjoughian,et al.  Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran , 2012 .

[53]  O. Lacombe,et al.  Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence , 2012 .

[54]  R. N. Bezenjani,et al.  Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran , 2011 .

[55]  B. Wernicke,et al.  A Paleogene extensional arc flare‐up in Iran , 2011 .

[56]  J. G. Shellnutt,et al.  Crustally-derived granites in the Panzhihua region, SW China: Implications for felsic magmatism in the Emeishan large igneous province , 2011 .

[57]  O. Bachmann,et al.  Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse , 2011, Contributions to Mineralogy and Petrology.

[58]  Y. Dilek,et al.  Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint , 2010 .

[59]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[60]  C. M. Gray,et al.  The two-component model for the genesis of granitic rocks in southeastern Australia — Nature of the metasedimentary-derived and basaltic end members , 2009 .

[61]  L. Jolivet,et al.  Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences , 2008 .

[62]  M. Allen,et al.  Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling , 2008 .

[63]  D. Stockli,et al.  Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics , 2008 .

[64]  G. L. Farmer,et al.  Mantle source volumes and the origin of the mid-Tertiary ignimbrite flare-up in the southern Rocky Mountains, western U.S. , 2008 .

[65]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[66]  A. K. Baird,et al.  Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism , 2007 .

[67]  M. Barton,et al.  Igniting flare-up events in Cordilleran arcs , 2007 .

[68]  J. Shahabpour Island-arc affinity of the Central Iranian Volcanic Belt , 2007 .

[69]  Colin J. N. Wilson,et al.  Compositional Zoning of the Bishop Tuff , 2007 .

[70]  R. Sparks,et al.  The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones , 2006 .

[71]  R. Flecker,et al.  Insights from the Talysh of Azerbaijan into the Paleogene evolution of the South Caspian region , 2005 .

[72]  A. Glazner,et al.  Voluminous granitic magmas from common basaltic sources , 2005 .

[73]  W. Collins,et al.  A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example , 2004 .

[74]  M. Keskin Magma generation by slab steepening and breakoff beneath a subduction‐accretion complex: An alternative model for collision‐related volcanism in Eastern Anatolia, Turkey , 2003 .

[75]  C. Miller,et al.  Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance , 2003 .

[76]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[77]  A. Crawford,et al.  High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas , 2001 .

[78]  J. Valley,et al.  Low-δ18O Rhyolites from Yellowstone: Magmatic Evolution Based on Analyses of Zircons and Individual Phenocrysts , 2001 .

[79]  J. Kaszuba,et al.  Effect of Carbon Dioxide on Dehydration Melting Reactions and Melt Compositions in the Lower Crust and the Origin of Alkaline Rocks , 2000 .

[80]  H. Keppler Constraints from partitioning experiments on the composition of subduction-zone fluids , 1996, Nature.

[81]  J. Mahoney,et al.  Geochemistry of the Wrangellia Flood Basalt Province: Implications for the Role of Continental and Oceanic Lithosphere in Flood Basalt Genesis , 1995 .

[82]  E. Middlemost Naming materials in the magma/igneous rock system , 1994 .

[83]  C. Langmuir,et al.  Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents , 1994, Nature.

[84]  M. Alavi TECTONICS OF THE ZAGROS OROGENIC BELT OF IRAN - NEW DATA AND INTERPRETATIONS , 1994 .

[85]  P. Rickwood Boundary lines within petrologic diagrams which use oxides of major and minor elements , 1989 .

[86]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[87]  W. Hildreth,et al.  Crustal contributions to arc magmatism in the Andes of Central Chile , 1988 .

[88]  J. Clemens,et al.  Constraints on melting and magma production in the crust , 1987 .

[89]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[90]  Y. Tatsumi,et al.  Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks , 1986 .

[91]  A. Gledhill,et al.  Isotope and trace element evidence for late-stage intra-crustal melting in the High Andes , 1982 .

[92]  D. DePaolo Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization , 1981 .

[93]  M. Pazirandeh Distribution of volcanic rocks in Iran and a preliminary discussion of their relationship to tectonics , 1973 .

[94]  J. Stocklin Structural History and Tectonics of Iran: A Review , 1968 .

[95]  N. L. Bowen THE GRANITE PROBLEM AND THE METHOD OF MULTIPLE PREJUDICES , 1948 .