A Nonstiff Euler Discretization of the Complex Ginzburg-Landau Equation in One Space Dimension

A nonstiff discretization method is applied to the complex Ginzburg--Landau (CGL) equation with periodic boundary conditions, \begin{eqnarray*} &\partial_t u = (1+i\nu) \partial_{xx}^2 u + Ru - (1+i\mu)|u|^2 u ; \\ u t\geq 0. \end{eqnarray*} This parabolic equation is discretized first in space by a truncated Fourier series (that is, a finite Fourier sum) and then in time by an explicit Euler method. The exponential decay of Fourier modes in both, the original CGL equation, and the resulting equation for the truncated Fourier series (independently from the number of Fourier modes in the truncation) is used in an essential way to prove the nonstiffness. Also dissipativity of the discretized equation is established and numerical results are discussed.

[1]  Alexander Ostermann,et al.  Runge-Kutta methods for partial differential equations and fractional orders of convergence , 1992 .

[2]  C. Lubich,et al.  Runge-Kutta approximation of quasi-linear parabolic equations , 1995 .

[3]  P. J. Blennerhassett,et al.  On the generation of waves by wind , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Alexander Ostermann,et al.  RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .

[5]  Arjen Doelman UvA-DARE ( Digital Academic Repository ) Finite-dimensional models of the Ginzburg-Landau equation Doelman , 2002 .

[6]  P. Holmes,et al.  Global existence theory for a generalized Ginzburg-Landau equation , 1992 .

[7]  Edriss S. Titi,et al.  Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation , 1993 .

[8]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[9]  Darryl D. Holm,et al.  Low-dimensional behaviour in the complex Ginzburg-Landau equation , 1988 .

[10]  P. Holmes,et al.  Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation , 1993 .

[11]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[12]  P. Takáč Dynamics on the attractor for the complex Ginzburg-Landau equation , 1994 .

[13]  Jean-Michel Ghidaglia,et al.  Dimension of the attractors associated to the Ginzburg-Landau partial differential equation , 1987 .

[14]  Lawrence Sirovich,et al.  Low-dimensional dynamics for the complex Ginzburg-Landau equation , 1990 .

[15]  Charles R. Doering,et al.  On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation , 1990 .

[16]  R. C. DiPrima,et al.  The Eckhaus and Benjamin-Feir resonance mechanisms , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Edriss S. Titi,et al.  On the rate of convergence of the nonlinear Galerkin methods , 1993 .

[18]  P. Heywood Trigonometric Series , 1968, Nature.

[19]  K. Cheng Theory of Superconductivity , 1948, Nature.

[20]  G. Lord Attractors and Inertial Manifolds for Finite-Difference Approximations of the Complex Ginzburg--Landau Equation , 1997 .

[21]  Keith Promislow,et al.  Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations , 1991 .

[22]  J. T. Stuart,et al.  Taylor-vortex flow: a dynamical system , 1986 .

[23]  L. Keefe,et al.  Dynamics of Perturbed Wavetrain Solutions to the Ginzburg‐Landau Equation , 1985 .

[24]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.

[25]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[26]  Peter Takáč,et al.  Invariant 2-tori in the time-dependent Ginzburg-Landau equation , 1992 .

[27]  Peter Taká,et al.  Bifurcations to invariant 2-tori for the complex Ginzburg-Landau equation , 1998 .

[28]  K. Stewartson,et al.  A non-linear instability theory for a wave system in plane Poiseuille flow , 1971, Journal of Fluid Mechanics.

[29]  H. Moon,et al.  Transitions to chaos in the Ginzburg-Landau equation , 1983 .

[30]  C. D. Levermore,et al.  Weak and strong solutions of the complex Ginzburg-Landau equation , 1994 .

[31]  Edriss S. Titi,et al.  Analyticity of essentially bounded solutions to semilinear parabolic systems and validity of the Ginzburg-Landau equation , 1996 .

[32]  Edriss S. Titi,et al.  GEVREY REGULARITY FOR NONLINEAR ANALYTIC PARABOLIC EQUATIONS , 1998 .

[33]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[34]  Roger Temam,et al.  Localization and approximation of attractors for the Ginzburg-Landau equation , 1991 .

[35]  Andrew M. Stuart,et al.  Discrete Gevrey regularity attractors and uppers–semicontinuity for a finite difference approximation to the Ginzburg–Landau equation , 1995 .