Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene

Following a significant number of graphene studies, other two-dimensional (2D) layered materials have attracted more and more interest for their unique structures and distinct physical properties, which has opened a window for realizing novel electronic or optoelectronic devices. Here, we present a comprehensive review on the applications of 2D-layered semiconductors as photodetectors, including photoconductors, phototransistors, and photodiodes, reported in the past five years. The device designs, mechanisms, and performances of the photodetectors are introduced and discussed systematically. Emerging techniques to improve device performances by enhancing light-matter interactions are addressed as well. Finally, we deliver a summary and outlook to provide a guideline of the future development of this rapidly growing field.

[1]  Tianjiao Wang,et al.  Anisotropic photocurrent response at black phosphorus-MoS2 p-n heterojunctions. , 2015, Nanoscale.

[2]  D. Geohegan,et al.  Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap , 2014, Nano Research.

[3]  Qiyuan He,et al.  van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. , 2015, Nano letters.

[4]  D. Ciudad,et al.  Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. , 2015, Nanoscale.

[5]  P. Ajayan,et al.  Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. , 2014, ACS nano.

[6]  S. Pantelides,et al.  Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. , 2014, Nano letters.

[7]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[8]  Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy. , 2015, Nano letters.

[9]  Myoung-Jae Lee,et al.  Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS₂ and Orthorhombic p-Type SnS Crystals. , 2015, Nano letters.

[10]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[11]  Yi Xie,et al.  Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. , 2012, Angewandte Chemie.

[12]  Dominique Coquillat,et al.  Black Phosphorus Terahertz Photodetectors , 2015, Advanced materials.

[13]  J. Grossman,et al.  Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p-n vdW Heterostructure. , 2016, ACS applied materials & interfaces.

[14]  Sungjoo Lee,et al.  High‐Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment , 2016, Advanced materials.

[15]  Jianbo Yin,et al.  A universal etching-free transfer of MoS2 films for applications in photodetectors , 2015, Nano Research.

[16]  A. Ferrari,et al.  Production and processing of graphene and 2d crystals , 2012 .

[17]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[18]  Tobin J. Marks,et al.  Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode , 2013, Proceedings of the National Academy of Sciences.

[19]  Zhong Lin Wang,et al.  p‐Type MoS2 and n‐Type ZnO Diode and Its Performance Enhancement by the Piezophototronic Effect , 2016, Advanced materials.

[20]  A. Javey,et al.  Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes , 2013 .

[21]  M. S. Skolnick,et al.  Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities , 2014, Nano letters.

[22]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[23]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[24]  Andres Castellanos-Gomez,et al.  Photocurrent generation with two-dimensional van der Waals semiconductors. , 2015, Chemical Society reviews.

[25]  Peter Sutter,et al.  Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. , 2014, ACS nano.

[26]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[27]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[28]  Fei Wang,et al.  Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. , 2014, ACS nano.

[29]  M. Chi,et al.  Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse , 2014, Scientific Reports.

[30]  Zhenxing Wang,et al.  Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. , 2015, Nanoscale.

[31]  Sefaattin Tongay,et al.  Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. , 2014, Nanoscale.

[32]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[33]  Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity , 2015, 1512.06867.

[34]  Zhenxing Wang,et al.  Highly sensitive photodetectors based on hybrid 2D-0D SnS2-copper indium sulfide quantum dots , 2016 .

[35]  J. Eom,et al.  Photocurrent response of MoS₂ field-effect transistor by deep ultraviolet light in atmospheric and N₂ gas environments. , 2014, ACS applied materials & interfaces.

[36]  Chi Won Ahn,et al.  Large-area single-layer MoSe2 and its van der Waals heterostructures. , 2014, ACS nano.

[37]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[38]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[39]  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[40]  Jiantong Li,et al.  Inkjet Printing of MoS2 , 2014 .

[41]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[42]  Jun‐Jie Zhu,et al.  Visible light detectors based on individual ZrSe3 and HfSe3 nanobelts , 2015 .

[43]  Madan Dubey,et al.  Two-dimensional material nanophotonics , 2014, 1410.3882.

[44]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[45]  G. Yang,et al.  Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. , 2015, Nanoscale.

[46]  A. Castellanos-Gómez,et al.  Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors. , 2015, Nano letters.

[47]  S. Lau,et al.  High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering , 2016, Scientific Reports.

[48]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[49]  S. Weiss,et al.  Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions. , 2015, ACS nano.

[50]  P. Ajayan,et al.  3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. , 2015, Nano letters.

[51]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[52]  Jing Zhang,et al.  Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. , 2014, ACS nano.

[53]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[54]  M. Terrones,et al.  Photosensor Device Based on Few‐Layered WS2 Films , 2013 .

[55]  Wei Lu,et al.  Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. , 2015, Small.

[56]  Wei Chen,et al.  Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. , 2014, ACS nano.

[57]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[58]  Yang Li,et al.  Photodiode-Like Behavior and Excellent Photoresponse of Vertical Si/Monolayer MoS2 Heterostructures , 2014, Scientific Reports.

[59]  Jana Zaumseil,et al.  Epitaxial Growth of PbSe Quantum Dots on MoS2 Nanosheets and their Near‐Infrared Photoresponse , 2014 .

[60]  Qingsheng Zeng,et al.  Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure , 2015 .

[61]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[62]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[63]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[64]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[65]  D. Tsai,et al.  Trilayered MoS$_{\bf 2}$ Metal –Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[67]  Y. Hong,et al.  Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector , 2015, Scientific Reports.

[68]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[69]  L. Xie,et al.  Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. , 2015, Nanoscale.

[70]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[71]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[72]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[73]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[74]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[75]  Yan Liu,et al.  Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. , 2016, ACS nano.

[76]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[77]  Weiwei Xiong,et al.  Flexible visible-light photodetectors with broad photoresponse based on ZrS3 nanobelt films. , 2014, Small.

[78]  Cheng Zhang,et al.  Controllable Growth of Vertical Heterostructure GaTe(x)Se(1-x)/Si by Molecular Beam Epitaxy. , 2015, ACS nano.

[79]  Mingqiang Huang,et al.  Broadband Black‐Phosphorus Photodetectors with High Responsivity , 2016, Advanced materials.

[80]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[81]  Yan Xin,et al.  Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. , 2014, ACS nano.

[82]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[83]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[84]  Wei Jiang,et al.  Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors , 2015, Nature Communications.

[85]  Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions. , 2014, Nano letters.

[86]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[87]  Junichiro Kono,et al.  An Atomically Layered InSe Avalanche Photodetector. , 2015, Nano letters.

[88]  Naomi J. Halas,et al.  Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells , 2014 .

[89]  Wei Wang,et al.  Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film , 2015 .

[90]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[91]  Kenji Watanabe,et al.  A WSe2/MoSe2 heterostructure photovoltaic device , 2015 .

[92]  Yan Zhang,et al.  In Situ Fabrication of Vertical Multilayered MoS2/Si Homotype Heterojunction for High-Speed Visible-Near-Infrared Photodetectors. , 2016, Small.

[93]  Jun Kang,et al.  TiS 3 nanoribbons: Width-independent band gap and strain-tunable electronic properties , 2015 .

[94]  Kaiyou Wang,et al.  Gate Tuning of High‐Performance InSe‐Based Photodetectors Using Graphene Electrodes , 2015, 1501.04051.

[95]  S. Im,et al.  Electric and Photovoltaic Behavior of a Few‐Layer α‐MoTe2/MoS2 Dichalcogenide Heterojunction , 2016, Advanced materials.

[96]  Lu Wang,et al.  Photothermoelectric and photovoltaic effects both present in MoS2 , 2015, Scientific Reports.

[97]  Jun Dai,et al.  Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface , 2012, Advanced materials.

[98]  Hsin Lin,et al.  Fast Photoresponse from 1T Tin Diselenide Atomic Layers , 2016 .

[99]  Yongtao Li,et al.  High-Performance Few-layer Mo-doped ReSe2 Nanosheet Photodetectors , 2014, Scientific Reports.

[100]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[101]  Aaron M. Jones,et al.  Control of two-dimensional excitonic light emission via photonic crystal , 2013, 1311.6071.

[102]  Zhenxing Wang,et al.  Role of Ga vacancy on a multilayer GaTe phototransistor. , 2014, ACS nano.

[103]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[104]  Jun Lou,et al.  CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage , 2014 .

[105]  P. Kim,et al.  Heterostructures based on inorganic and organic van der Waals systems , 2014 .

[106]  Santanu Das,et al.  Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review , 2014 .

[107]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[108]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[109]  Q. Xue,et al.  Electrical and photovoltaic characteristics of MoS2/Si p-n junctions , 2015 .

[110]  Soo Doo Chae,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[111]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[112]  A. Javey,et al.  Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. , 2014, Journal of the American Chemical Society.

[113]  T. Heine,et al.  Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications , 2014, 1406.5012.

[114]  Tianyou Zhai,et al.  Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. , 2010, ACS nano.

[115]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[116]  Klaus Kern,et al.  Contact and edge effects in graphene devices. , 2008, Nature nanotechnology.

[117]  Liyong Niu,et al.  Photosensitive Graphene Transistors , 2014, Advanced materials.

[118]  Jia Zhu,et al.  A van der Waals pn heterojunction with organic/inorganic semiconductors , 2015, 1511.02361.

[119]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[120]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[121]  F. Léonard,et al.  Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1-x)Se2x alloy devices. , 2015, Nano letters.

[122]  A. Arrott,et al.  Exfoliated MoS2 monolayers as substrates for magnetic materials , 1991 .

[123]  C. Sow,et al.  Improved photoelectrical properties of MoS(2) films after laser micromachining. , 2014, ACS nano.

[124]  Yan Li,et al.  High performance few-layer GaS photodetector and its unique photo-response in different gas environments. , 2014, Nanoscale.

[125]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[126]  Yong-Hoon Kim,et al.  MoS2-InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity. , 2016, ACS applied materials & interfaces.

[127]  J. Coleman,et al.  Photoconductivity of solution-processed MoS2 films , 2013 .

[128]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[129]  Andrey Klots,et al.  Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2. , 2015, Nano letters.

[130]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[131]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[132]  P. Hu,et al.  Solid-state reaction synthesis of two-dimensional CuGaSe2 nanosheets for high performance photodetectors. , 2014, Physical chemistry chemical physics : PCCP.

[133]  F. Miao,et al.  High Responsivity Phototransistors Based on Few‐Layer ReS2 for Weak Signal Detection , 2015, 1512.06515.

[134]  Qingsheng Zeng,et al.  Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. , 2015, Nano letters.

[135]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[136]  Qing Tang,et al.  Graphene-analogous low-dimensional materials , 2013 .

[137]  Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide , 2015, Nature communications.

[138]  Di Wu,et al.  Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. , 2013, Journal of the American Chemical Society.

[139]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[140]  Hou-zhi Zheng,et al.  Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors , 2014, Scientific Reports.

[141]  Jiansheng Jie,et al.  MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High‐Detectivity, Self‐Driven Visible–Near Infrared Photodetectors , 2015 .

[142]  High Photoresponsivity and Short Photoresponse Times in Few-Layered WSe2 Transistors. , 2015, ACS applied materials & interfaces.

[143]  Bin Yu,et al.  Extraordinary photoresponse in two-dimensional In(2)Se(3) nanosheets. , 2014, ACS nano.

[144]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[145]  Ashish Arora,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[146]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[147]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Zhenxing Wang,et al.  Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. , 2015, Nanoscale.

[149]  Mustafa Lotya,et al.  Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersability of Exfoliated Nanosheets Varies Only Weakly between Compounds /v Sol (mol/ml) Characterisation of Dispersions , 2022 .

[150]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[151]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[152]  Jianjun Luo,et al.  Tribotronic Enhanced Photoresponsivity of a MoS2 Phototransistor , 2016, Advanced science.

[153]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[154]  G. Steele,et al.  Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. , 2014, Nano letters.

[155]  S. An,et al.  A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2 , 2015, Advanced materials.

[156]  Fengnian Xia,et al.  The Interaction of Light and Graphene: Basics, Devices, and Applications , 2013, Proceedings of the IEEE.

[157]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[158]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[159]  V. Fal’ko,et al.  High-sensitivity photodetectors based on multilayer GaTe flakes. , 2014, ACS nano.

[160]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[161]  Chun Li,et al.  Large-area synthesis of monolayer WS₂ and its ambient-sensitive photo-detecting performance. , 2015, Nanoscale.

[162]  A. Shukla,et al.  A high performance graphene/few-layer InSe photo-detector. , 2015, Nanoscale.

[163]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[164]  Jiansheng Jie,et al.  High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors. , 2016, ACS nano.

[165]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[166]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[167]  Du Xiang,et al.  Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus , 2015, Nature Communications.

[168]  Ting Zhang,et al.  Single-layer single-crystalline SnSe nanosheets. , 2013, Journal of the American Chemical Society.

[169]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[170]  Haibo Zeng,et al.  Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector , 2016 .

[171]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[172]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[173]  J. Joo,et al.  Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches , 2015, Nano Research.

[174]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[175]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[176]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society Reviews.

[177]  Caiyun Chen,et al.  Broadband photodetectors based on graphene-Bi2Te3 heterostructure. , 2015, ACS Nano.

[178]  Zhongming Wei,et al.  Tunable Polarity Behavior and Self-Driven Photoswitching in p-WSe₂/n-WS₂ Heterojunctions. , 2015, Small.

[179]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[180]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[181]  R. Sankar,et al.  High performance and bendable few-layered InSe photodetectors with broad spectral response. , 2014, Nano letters.

[182]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[183]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[184]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[185]  Q. Bao,et al.  Highly responsive MoS2 photodetectors enhanced by graphene quantum dots , 2015, Scientific Reports.

[186]  N. Kohara,et al.  Physical Vapor Deposition of Hexagonal and Tetragonal CuIn5Se8 Thin Films , 2000 .

[187]  Y. Tao,et al.  Enhanced ultraviolet-visible light responses of phototransistors based on single and a few ZrS₃ nanobelts. , 2015, Nanoscale.

[188]  S. Suga,et al.  Electrical and optical properties of black phosphorus single crystals , 1983 .

[189]  Tianyou Zhai,et al.  Large‐Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors , 2016 .

[190]  Hua Xu,et al.  High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. , 2014, Small.

[191]  S. Tiwari,et al.  Ultrafast response of monolayer molybdenum disulfide photodetectors , 2015, Nature Communications.

[192]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[193]  E. Hwang,et al.  High-performance photocurrent generation from two-dimensional WS2 field-effect transistors , 2014 .

[194]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[195]  Yan Xin,et al.  Field-effect transistors based on few-layered α-MoTe(2). , 2014, ACS nano.

[196]  L. Eaves,et al.  Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement , 2013, Advanced materials.

[197]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[198]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[199]  Su-Huai Wei,et al.  Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors , 2014 .

[200]  Sungjoo Lee,et al.  Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3‐Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment , 2016, Advanced materials.

[201]  C. Gu,et al.  CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. , 2014, Nanoscale.

[202]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[203]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[204]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[205]  E. Tutuc,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012 .

[206]  Phaedon Avouris,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[207]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[208]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[209]  Zhenxing Wang,et al.  High-performance flexible photodetectors based on GaTe nanosheets. , 2015, Nanoscale.

[210]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[211]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[212]  Haixin Chang,et al.  Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. , 2014, ACS nano.

[213]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[214]  Alan Seabaugh,et al.  Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide , 2015, Nature communications.

[215]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[216]  Andres Castellanos-Gomez,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. , 2014, Nature communications.

[217]  D. Chi,et al.  Large-scale two-dimensional MoS₂ photodetectors by magnetron sputtering. , 2015, Optics express.

[218]  Wei Chen,et al.  Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor , 2013 .

[219]  O. Prezhdo,et al.  Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction. , 2016, Nano letters.

[220]  P. Zhou,et al.  ReS2‐Based Field‐Effect Transistors and Photodetectors , 2015, 1503.01902.

[221]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[222]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[223]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2 , 1997 .

[224]  J. Jasinski,et al.  Crystal structure of κ-In2Se3 , 2002 .

[225]  F. Xia,et al.  Photoconductivity of biased graphene , 2012, Nature Photonics.

[226]  H. Jeong,et al.  Chemical Vapor Deposition of Large‐Sized Hexagonal WSe2 Crystals on Dielectric Substrates , 2015, Advanced materials.

[227]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[228]  X. Marie,et al.  Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 , 2013, 1306.3442.

[229]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[230]  Thomas Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[231]  Wei Zhou,et al.  Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. , 2016, Nano letters.

[232]  M. Burghard,et al.  Thin-layer black phosphorus/GaAs heterojunction p-n diodes , 2015 .

[233]  Sungjoo Lee,et al.  High‐Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self‐Assembled Monolayer Doping , 2015 .

[234]  K. Novoselov,et al.  High Broad‐Band Photoresponsivity of Mechanically Formed InSe–Graphene van der Waals Heterostructures , 2015, Advanced materials.

[235]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[236]  Lain-Jong Li,et al.  Heterostructured WS2/CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity , 2016, Advanced materials.

[237]  G. Steele,et al.  Ultrahigh Photoresponse of Few‐Layer TiS3 Nanoribbon Transistors , 2014, 1406.5003.

[238]  G. Duscher,et al.  Pulsed Laser Deposition of Photoresponsive Two‐Dimensional GaSe Nanosheet Networks , 2014 .

[239]  Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy. , 2009, Nano letters.

[240]  Du Xiang,et al.  Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus. , 2015, ACS nano.

[241]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[242]  Zhenxing Wang,et al.  Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling , 2016 .

[243]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[244]  Charles M Marcus,et al.  Hot carrier transport and photocurrent response in graphene. , 2011, Nano letters.

[245]  Hua Xu,et al.  A self-powered graphene–MoS2 hybrid phototransistor with fast response rate and high on–off ratio , 2015 .

[246]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[247]  Jun‐Jie Zhu,et al.  Individual HfS3 nanobelt for field-effect transistor and high performance visible-light detector , 2014 .

[248]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[249]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[250]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[251]  Xiaokun Yang,et al.  Controllable Growth Orientation of SnS2 Flakes for Low‐Noise, High‐Photoswitching Ratio, and Ultrafast Phototransistors , 2016 .

[252]  W. Cao,et al.  Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response† , 2015 .

[253]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[254]  H. Berger,et al.  Photoemission and optical studies of ZrSe3, HfSe3, and ZrS3 , 2007 .

[255]  J. Velasco,et al.  Stacking-dependent band gap and quantum transport in trilayer graphene , 2011 .

[256]  Hideyuki Tanaka,et al.  Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. , 2015, The journal of physical chemistry letters.

[257]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[258]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[259]  P. Ajayan,et al.  Ternary CuIn7Se11: Towards Ultra‐Thin Layered Photodetectors and Photovoltaic Devices , 2014, Advanced materials.

[260]  Gilles Lerondel,et al.  Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials. , 2016, Nano letters.

[261]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[262]  W. Schairer,et al.  Growth and optical absorption spectra of the layer‐type trichalcogenides ZrS3 and HfS3 , 1973 .

[263]  Yu‐Guo Guo,et al.  Anisotropic Photoresponse Properties of Single Micrometer‐Sized GeSe Nanosheet , 2012, Advanced materials.

[264]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[265]  J. Lou,et al.  Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. , 2015, Nano letters.

[266]  Sang‐Woo Kim,et al.  Highly Efficient Photocurrent Generation from Nanocrystalline Graphene–Molybdenum Disulfide Lateral Interfaces , 2016, Advanced materials.

[267]  Zhixian Zhou,et al.  Polarized photocurrent response in black phosphorus field-effect transistors. , 2014, Nanoscale.

[268]  R. Sankar,et al.  High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors. , 2016, Nanoscale.

[269]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[270]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[271]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[272]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[273]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[274]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[275]  Jiwon Jeon,et al.  Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. , 2014, ACS nano.

[276]  Y. Maruyama,et al.  Synthesis and some properties of black phosphorus single crystals , 1981 .

[277]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[278]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[279]  Yi Xie,et al.  High‐Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite , 2014 .

[280]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[281]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[282]  J. Leotin,et al.  Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. , 2014, ACS nano.

[283]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[284]  Fucai Liu,et al.  Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS2 , 2016 .

[285]  Jing Xia,et al.  Large‐Scale Growth of Two‐Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors , 2015 .

[286]  Sungjoo Lee,et al.  A High‐Performance WSe2/h‐BN Photodetector using a Triphenylphosphine (PPh3)‐Based n‐Doping Technique , 2016, Advanced materials.

[287]  A. Eychmüller,et al.  Size and shape control of colloidally synthesized IV-VI nanoparticulate tin(II) sulfide. , 2008, Journal of the American Chemical Society.

[288]  Kai Xu,et al.  Ultrasensitive Phototransistors Based on Few‐Layered HfS2 , 2015, Advanced materials.

[289]  Jian-Bai Xia,et al.  Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes , 2014, Scientific Reports.

[290]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[291]  Hyoungsub Kim,et al.  Trap-induced photoresponse of solution-synthesized MoS2. , 2016, Nanoscale.

[292]  A. Sandhu,et al.  High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors , 2014, Nanotechnology.

[293]  Andras Kis,et al.  Light Generation and Harvesting in a van der Waals Heterostructure , 2014, ACS nano.

[294]  Gyuchull Han,et al.  Giant Photoamplification in Indirect‐Bandgap Multilayer MoS2 Phototransistors with Local Bottom‐Gate Structures , 2015, Advanced materials.

[295]  R. Sankar,et al.  Ultra‐Thin Layered Ternary Single Crystals [Sn(SxSe1−x)2] with Bandgap Engineering for High Performance Phototransistors on Versatile Substrates , 2016 .

[296]  Y. Bando,et al.  Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors , 2015, Advanced materials.

[297]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[298]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[299]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[300]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[301]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[302]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[303]  Bing Li,et al.  High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. , 2015, Journal of the American Chemical Society.

[304]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[305]  W. Cao,et al.  Solid-State Reaction Synthesis of a InSe/CuInSe2 Lateral p–n Heterojunction and Application in High Performance Optoelectronic Devices , 2015 .

[306]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[307]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[308]  Zhenxing Wang,et al.  van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. , 2015, Nano letters.

[309]  W. Jaegermann,et al.  Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2: morphology and growth modes , 1997 .