Circuit Techniques for IoT-Enabling Short-Range ULP Radios

This chapter addresses the design of cost-aware ultra-low-power (ULP) radios for both 2.4-GHz and sub-GHz ISM bands. Starting from the system aspects that provide the essential insights, effective circuit techniques are presented to improve the radio performances and power efficiency, while minimizing the die area and number of external components.

[1]  John A. Stankovic,et al.  Research Directions for the Internet of Things , 2014, IEEE Internet of Things Journal.

[2]  Arun Paidimarri,et al.  13.7 A +10dBm 2.4GHz transmitter with sub-400pW leakage and 43.7% system efficiency , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[3]  Kathleen Philips,et al.  A 1.2 nJ/bit 2.4 GHz Receiver With a Sliding-IF Phase-to-Digital Converter for Wireless Personal/Body Area Networks , 2014, IEEE Journal of Solid-State Circuits.

[4]  Antonio Liscidini,et al.  Low-Power Quadrature Receivers for ZigBee (IEEE 802.15.4) Applications , 2010, IEEE Journal of Solid-State Circuits.

[5]  Robert B. Staszewski,et al.  Third-harmonic injection technique applied to a 5.87-to-7.56GHz 65nm CMOS Class-F oscillator with 192dBc/Hz FOM , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[6]  Antonio Liscidini,et al.  A 2.4 GHz 3.6mW 0.35mm2 Quadrature Front-End RX for ZigBee and WPAN Applications , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[7]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[8]  Junghwan Han,et al.  Recursive Receiver Down-Converters With Multiband Feedback and Gain-Reuse , 2008, IEEE Journal of Solid-State Circuits.

[9]  Fan Zhang,et al.  A 1.6mW 300mV-supply 2.4GHz receiver with −94dBm sensitivity for energy-harvesting applications , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[10]  Pui-In Mak,et al.  9.4 A 0.5V 1.15mW 0.2mm2 Sub-GHz ZigBee receiver supporting 433/860/915/960MHz ISM bands with zero external components , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[11]  Yan Zhang,et al.  13.2 A 3.7mW-RX 4.4mW-TX fully integrated Bluetooth Low-Energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40nm CMOS , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[12]  Pui-In Mak,et al.  High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS , 2012 .

[13]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[14]  Rui Paulo Martins,et al.  Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS , 2015 .

[15]  Antonio Liscidini,et al.  A current re-use PA-VCO cell for low-power BLE transmitters , 2015, ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC).

[16]  Kari Halonen,et al.  Analysis and Design of Passive Polyphase Filters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Manuel Delgado-Restituto,et al.  Ultra Low Power Transceiver for Wireless Body Area Networks , 2013 .

[18]  Kartikeya Mayaram,et al.  A 250 mV, 352 $\mu$W GPS Receiver RF Front-End in 130 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[19]  Michail Papamichail,et al.  13.3 A 10mW Bluetooth Low-Energy transceiver with on-chip matching , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[20]  Pui-In Mak,et al.  A 2.4-GHz ZigBee Transmitter Using a Function-Reuse Class-F DCO-PA and an ADPLL Achieving 22.6% (14.5%) System Efficiency at 6-dBm (0-dBm) $P_{\mathrm {out}}$ , 2017, IEEE Journal of Solid-State Circuits.

[21]  Brian Otis,et al.  21.7 A 1.8mW PLL-free channelized 2.4GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[22]  Pui-In Mak,et al.  0.07 mm 2 , 2 mW, 75 MHz-IF, fourth-order BPF using source-follower-based resonator in 90 nm CMOS , 2012 .

[23]  Pui-In Mak,et al.  A 2.4 GHz ZigBee Receiver Exploiting an RF-to-BB-Current-Reuse Blixer + Hybrid Filter Topology in 65 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[24]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[25]  Pui-In Mak,et al.  A Time-Interleaved Ring-VCO with Reduced 1/ $\text {f}^{3}$ Phase Noise Corner, Extended Tuning Range and Inherent Divided Output , 2016, IEEE Journal of Solid-State Circuits.

[26]  Behzad Razavi,et al.  Design of high-speed, low-power frequency dividers and phase-locked loops in deep submicron CMOS , 1995, IEEE J. Solid State Circuits.

[27]  Abu Khari bin A'ain,et al.  CMOS source degenerated differential active inductor , 2008 .

[28]  Pui-In Mak,et al.  A 0.46-mm$ ^{2}$ 4-dB NF Unified Receiver Front-End for Full-Band Mobile TV in 65-nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[29]  Pui-In Mak,et al.  A 0.07mm2, 2mW, 75MHz-IF, 4th-order BPF using a source-follower-based resonator in 90nm CMOS , 2012 .

[30]  Asad A. Abidi,et al.  CMOS mixers and polyphase filters for large image rejection , 2001, IEEE J. Solid State Circuits.

[31]  Anantha Chandrakasan,et al.  Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[32]  Antonio Liscidini,et al.  Current-Mode, WCDMA Channel Filter With In-Band Noise Shaping , 2010, IEEE Journal of Solid-State Circuits.

[33]  Pui-In Mak,et al.  A Sub-GHz Multi-ISM-Band ZigBee Receiver Using Function-Reuse and Gain-Boosted N-Path Techniques for IoT Applications , 2014, IEEE Journal of Solid-State Circuits.