A LUT-Based Approximate Adder

In this paper, we propose a novel approximate adder structure for LUT-based FPGA technology. Compared with a full featured accurate carry-ripple adder, the longest path is significantly shortened which enables the clocking with an increased clock frequency. By using the proposed adder structure, the throughput of an FPGA-based implementation can be significantly increased. On the other hand, the resulting average error can be reduced compared to similar approaches for ASIC implementations.

[1]  Ieee Circuits,et al.  IEEE Transactions on Very Large Scale Integration (VLSI) Systems , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  Jie Han,et al.  Approximate computing: An emerging paradigm for energy-efficient design , 2013, 2013 18th IEEE European Test Symposium (ETS).

[3]  Sherief Reda,et al.  ABACUS: A technique for automated behavioral synthesis of approximate computing circuits , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[4]  Zhi-Hui Kong,et al.  Design of Low-Power High-Speed Truncation-Error-Tolerant Adder and Its Application in Digital Signal Processing , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.