Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.

We demonstrate an integrated holographic optical tweezers system with double-helix point spread function (DH-PSF) imaging for high precision three-dimensional multi-particle tracking. The tweezers system allows for the creation and control of multiple optical traps in three-dimensions, while the DH-PSF allows for high precision, 3D, multiple-particle tracking in a wide field. The integrated system is suitable for particles emitting/scattering either coherent or incoherent light and is easily adaptable to existing holographic tweezers systems. We demonstrate simultaneous tracking of multiple micro-manipulated particles and perform quantitative estimation of the lateral and axial forces in an optical trap by measuring the fluid drag force exerted on the particles. The system is thus capable of unveiling complex 3D force landscapes that make it suitable for quantitative studies of interactions in colloidal systems, biological materials, and a variety of soft matter systems.

[1]  Sean Quirin,et al.  Pattern Matching Estimator for Precise 3-D Particle Localization with Engineered Point Spread Functions , 2010 .

[2]  William D. Phillips,et al.  New Mechanisms for Laser Cooling , 1990 .

[3]  Ivan I. Smalyukh,et al.  Shape-Controlled Colloidal Interactions in Nematic Liquid Crystals , 2009, Science.

[4]  Jesper Glückstad,et al.  Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation. , 2008, Optics express.

[5]  Yoav Y Schechner,et al.  Depth from diffracted rotation. , 2006, Optics letters.

[6]  Rafael Piestun,et al.  3D microscopy with a double-helix point spread function , 2009, BiOS.

[7]  Rafael Piestun,et al.  Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system , 2009 .

[8]  Steven Chu,et al.  LASER TRAPPING OF NEUTRAL PARTICLES , 1992 .

[9]  W. E. Moerner,et al.  Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. , 2010, Nano letters.

[10]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[11]  Rafael Piestun,et al.  Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. , 2009, Optics express.

[12]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[13]  K. Schütze,et al.  Cut out or poke in--the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. , 1997, Genetic analysis : biomolecular engineering.

[14]  David G. Grier,et al.  Optical tweezers in colloid and interface science , 1997 .

[15]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[16]  Rafael Piestun,et al.  Performance limits on three-dimensional particle localization in photon-limited microscopy. , 2010, Optics letters.

[17]  Thomas T. Perkins,et al.  Optical traps for single molecule biophysics: a primer , 2009 .

[18]  J. Leach,et al.  Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers , 2007 .

[19]  David G Grier,et al.  Holographic microscopy of holographically trapped three-dimensional structures. , 2007, Optics express.

[20]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[21]  R. Piestun,et al.  Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. , 2008, Optics express.

[22]  Paras N Prasad,et al.  Laser trapping in anisotropic fluids and polarization-controlled particle dynamics , 2006, Proceedings of the National Academy of Sciences.

[23]  Miles Padgett,et al.  Particle tracking stereomicroscopy in optical tweezers: control of trap shape. , 2010, Optics express.

[24]  K. Schütze,et al.  Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. , 1998, Cellular and molecular biology.

[25]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[26]  Yanxia Cui,et al.  Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. , 2010, Nano letters.

[27]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[28]  D. Grier A revolution in optical manipulation , 2003, Nature.

[29]  Suman Anand,et al.  Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator , 2009, OPTO.