Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources.

In recent years, a large quantity of work have been done to narrow the gap between theory and practice in quantum key distribution (QKD). However, most of them are focus on two-party protocols. Very recently, Yao Fu et al proposed a measurement-device-independent quantum cryptographic conferencing (MDI-QCC) protocol and proved its security in the limit of infinitely long keys. As a step towards practical application for MDI-QCC, we design a biased decoy-state measurement-device-independent quantum cryptographic conferencing protocol and analyze the performance of the protocol in both the finite-key and infinite-key regime. From numerical simulations, we show that our decoy-state analysis is tighter than Yao Fu et al. That is, we can achieve the nonzero asymptotic secret key rate in long distance with approximate to 200km and we also demonstrate that with a finite size of data (say 1011 to 1013 signals) it is possible to perform secure MDI-QCC over reasonable distances.

[1]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[2]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[3]  H. Weinfurter,et al.  Experimental demonstration of four-party quantum secret sharing. , 2006, Physical review letters.

[4]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[5]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[6]  Xiang‐Bin Wang,et al.  Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors , 2012, 1207.0392.

[7]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[8]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[9]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[10]  Johannes Skaar,et al.  Avoiding the blinding attack in QKD , 2010, 1012.0476.

[11]  Qiang Zhou,et al.  Measurement-device-independent quantum key distribution: from idea towards application , 2015, 1501.07307.

[12]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[13]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[14]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[15]  Yang Wang,et al.  Finite-key analysis for one-sided device-independent quantum key distribution , 2013 .

[16]  Feihu Xu Measurement-device-independent quantum communication with an untrusted source , 2015, 1508.00970.

[17]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[18]  Feihu Xu,et al.  Practical aspects of measurement-device-independent quantum key distribution , 2013, 1305.6965.

[19]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[20]  Feihu Xu,et al.  W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution , 2015, Scientific Reports.

[21]  Vadim Makarov,et al.  Avoiding the blinding attack in QKD , 2010 .

[22]  M. Hayashi,et al.  Concise and tight security analysis of the Bennett–Brassard 1984 protocol with finite key lengths , 2011, 1107.0589.

[23]  James F. Dynes,et al.  Avoiding the blinding attack in QKD , 2010 .

[24]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[25]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[26]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[27]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[28]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[29]  Dong Liu,et al.  Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources , 2011, 1110.4574.

[30]  Wei Chen,et al.  Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources , 2013 .

[31]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[32]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[33]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[34]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[35]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[36]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[37]  Hoi-Kwong Lo,et al.  Long distance measurement-device-independent quantum key distribution with entangled photon sources , 2013, 1306.5814.

[38]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[39]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[40]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[41]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[42]  Wei Cui,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2013, Nature Communications.

[43]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[44]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[45]  Yang Wang,et al.  Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks , 2014, 1406.0387.

[46]  Jian-Wei Pan,et al.  Experimental quantum secret sharing and third-man quantum cryptography. , 2005, Physical review letters.

[47]  Zheng-Fu Han,et al.  Security of decoy states QKD with finite resources against collective attacks , 2009 .

[48]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[49]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[50]  Marek Żukowski,et al.  Quest for Ghz States , 1998 .

[51]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[52]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[53]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[54]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[55]  M. Hayashi Upper bounds of eavesdropper’s performances in finite-length code with the decoy method , 2007, quant-ph/0702250.

[56]  Francesco Petruccione,et al.  Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies , 2013 .

[57]  Feihu Xu,et al.  Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution , 2014, 1406.0188.

[58]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[59]  Hoi-Kwong Lo,et al.  Phase-Remapping Attack in Practical Quantum Key Distribution Systems , 2006, ArXiv.

[60]  B A Bell,et al.  Experimental demonstration of graph-state quantum secret sharing , 2014, Nature Communications.

[61]  Mario Berta,et al.  Min-entropy uncertainty relation for finite-size cryptography. , 2012, 1205.0842.

[62]  Wan-Su Bao,et al.  Biased decoy-state measurement-device-independent quantum key distribution with finite resources , 2015 .

[63]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .