Level Set Estimation from Projection Measurements: Performance Guarantees and Fast Computation

Estimation of the level set of a function (i.e., regions where the function exceeds some value) is an important problem with applications in digital elevation mapping, medical imaging, astronomy, etc. In many applications, the function of interest is not observed directly. Rather, it is acquired through (linear) projection measurements, such as tomographic projections, interferometric measurements, coded-aperture measurements, and random projections associated with compressed sensing. This paper describes a new methodology for rapid and accurate estimation of the level set from such projection measurements. The key defining characteristic of the proposed method, called the projective level set estimator, is its ability to estimate the level set from projection measurements without an intermediate reconstruction step. This leads to significantly faster computation relative to heuristic “plug-in" methods that first estimate the function, typically with an iterative algorithm, and then threshold the result. ...

[1]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[2]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[3]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[4]  Fátima N. S. de Medeiros,et al.  Target Detection in SAR Images Based on a Level Set Approach , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[5]  Clayton D. Scott,et al.  Regression Level Set Estimation Via Cost-Sensitive Classification , 2007, IEEE Transactions on Signal Processing.

[6]  P J Withers,et al.  Region‐of‐interest tomography using filtered backprojection: assessing the practical limits , 2011, Journal of microscopy.

[7]  Dustin G. Mixon,et al.  Two are better than one: Fundamental parameters of frame coherence , 2011, 1103.0435.

[8]  Sundeep Rangan,et al.  Necessary and Sufficient Conditions for Sparsity Pattern Recovery , 2008, IEEE Transactions on Information Theory.

[9]  Waheed U. Bajwa,et al.  Fast level set estimation from projection measurements , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[10]  Robert D. Nowak,et al.  Compressive distilled sensing: Sparse recovery using adaptivity in compressive measurements , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[11]  Wenceslao González-Manteiga,et al.  PLUG‐IN ESTIMATION OF GENERAL LEVEL SETS , 2006 .

[12]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[13]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[14]  Yuhong Yang,et al.  Minimax Nonparametric Classification—Part I: Rates of Convergence , 1998 .

[15]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[16]  R M Lewitt,et al.  Processing of incomplete measurement data in computed tomography. , 1979, Medical physics.

[17]  M. Rudelson,et al.  LECTURE NOTES ON NON-ASYMPTOTIC THEORY OF RANDOM MATRICES , 2012 .

[18]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[19]  D. Donoho,et al.  Basis pursuit , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[20]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[21]  Kishori M. Konwar,et al.  Fast Distance Preserving Level Set Evolution for Medical Image Segmentation , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[22]  A. Tsybakov On nonparametric estimation of density level sets , 1997 .

[23]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[24]  A. Robert Calderbank,et al.  Why Gabor frames? Two fundamental measures of coherence and their role in model selection , 2010, Journal of Communications and Networks.

[25]  Robert D. Nowak,et al.  Controlling the error in FMRI: Hypothesis testing or set estimation? , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[26]  Mohamed-Jalal Fadili,et al.  Robust Sparse Analysis Regularization , 2011, IEEE Transactions on Information Theory.

[27]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[28]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[29]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[30]  Robert D. Nowak,et al.  Minimax-optimal classification with dyadic decision trees , 2006, IEEE Transactions on Information Theory.

[31]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[32]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[33]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[34]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[35]  P. Rigollet,et al.  Fast rates for plug-in estimators of density level sets , 2008 .

[36]  Robert D. Nowak,et al.  Adaptive Hausdorff Estimation of Density Level Sets , 2009, COLT.

[37]  M. Rudelson Recent developments in non-asymptotic theory of random matrices , 2013, 1301.2382.

[38]  T. R. Gosnell,et al.  Digital Image Reconstruction: Deblurring and Denoising , 2005 .

[39]  Amar Mitiche,et al.  Multiregion level-set partitioning of synthetic aperture radar images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  L. Wasserman,et al.  Revisiting Marginal Regression , 2009, 0911.4080.

[41]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[42]  A. Baíllo Total Error in a Plug-in Estimator of Level Sets , 2003 .

[43]  Minh N. Do,et al.  A Theory for Sampling Signals from a Union of Subspaces , 2022 .

[44]  Jun Ma Iterative region of interest reconstruction in emission tomography , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[45]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[46]  D. Mason,et al.  Asymptotic normality of plug-in level set estimates. , 2009, 0908.1045.

[47]  Robert D. Nowak,et al.  Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..

[48]  Rebecca Willett,et al.  Minimax optimal level set estimation , 2005, SPIE Optics + Photonics.

[49]  Michael Knaup,et al.  New approaches to region of interest computed tomography. , 2011, Medical physics.

[50]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[51]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[52]  Woncheol Jang,et al.  Cluster analysis of massive datasets in astronomy , 2007, Stat. Comput..

[53]  Michael Elad,et al.  RIP-Based Near-Oracle Performance Guarantees for SP, CoSaMP, and IHT , 2012, IEEE Transactions on Signal Processing.

[54]  Robert D. Nowak,et al.  Distilled sensing: selective sampling for sparse signal recovery , 2009, AISTATS.

[55]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.