Genomic p16 abnormalities in the progression of chronic myeloid leukemia into blast crisis: a sequential study in 42 patients.

[1]  H. Kantarjian,et al.  Quantitative measurement of BCR/abl transcripts using real-time polymerase chain reaction. , 2002, Annals of oncology : official journal of the European Society for Medical Oncology.

[2]  E. Montserrat,et al.  Single-agent therapy with oral mercaptopurine for nonlymphoid blast crisis of chronic myeloid leukemia , 2001, Annals of Hematology.

[3]  R. Pieters,et al.  In vitro drug resistance and prognostic impact of p16INK4A/P15INK4B deletions in childhood T‐cell acute lymphoblastic leukaemia , 2001, British journal of haematology.

[4]  P. Burton,et al.  Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse. , 2001, Blood.

[5]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[6]  E. Estey,et al.  The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. , 2000 .

[7]  P. Guldberg,et al.  Concurrent disruption of p16INK4a and the ARF-p53 pathway predicts poor prognosis in aggressive non-Hodgkin's lymphoma , 2000, Leukemia.

[8]  A. López-Guillermo,et al.  INK4a/ARF locus alterations in human non-Hodgkin's lymphomas mainly occur in tumors with wild-type p53 gene. , 2000, The American journal of pathology.

[9]  S. Asano,et al.  Expression of p16INK4A and p14ARF in hematological malignancies , 1999, Leukemia.

[10]  Z. Estrov,et al.  The biology of chronic myeloid leukemia. , 1999, The New England journal of medicine.

[11]  C. Sawyers Chronic myeloid leukemia. , 1999, The New England journal of medicine.

[12]  R. DePinho,et al.  The INK4A/ARF locus and its two gene products. , 1999, Current opinion in genetics & development.

[13]  H. Drexler Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia–lymphoma cells , 1998, Leukemia.

[14]  Ken Chen,et al.  The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and Neutralizes MDM2's Inhibition of p53 , 1998, Cell.

[15]  S. Montoto,et al.  ‘Lymphoid’ blast crisis of chronic myeloid leukaemia is associated with distinct clinicohaematological features , 1998, British journal of haematology.

[16]  H. Koeffler,et al.  Allelotype analysis in the evolution of chronic myelocytic leukemia. , 1997, Blood.

[17]  J. Herman,et al.  Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. , 1997, Cancer research.

[18]  A. López-Guillermo,et al.  An assessment of the clinicohematological criteria for the accelerated phase of chronic myeloid leukemia , 1996, European journal of haematology.

[19]  J. Herman,et al.  Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Tanaka,et al.  Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. , 1996, Leukemia.

[21]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[22]  F. Ragione,et al.  Involvement of the cyclin‐dependent kinase‐4 inhibitor (CDKN2) gene in the pathogenesis of lymphoid blast crisis of chronic myelogenous leukaemia , 1995, British journal of haematology.

[23]  T. Manshouri,et al.  p16INK4A and p15INK4B gene deletions in primary leukemias. , 1995, Blood.

[24]  J. Goldman,et al.  Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. , 1995, Blood.

[25]  R. Larson,et al.  The relationship between secondary chromosomal abnormalities and blast transformation in chronic myelogenous leukemia. , 1995, Leukemia.

[26]  L. Peltonen,et al.  Acceleration of chronic myeloid leukemia correlates with calcitonin gene hypermethylation. , 1991, Blood.

[27]  E. Montserrat,et al.  A study of prognostic factors in blast crisis of Philadelphia chromosome‐positive chronic myelogenous leukaemia , 1990, British Journal of Haematology.

[28]  G. Daley,et al.  Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. , 1990, Science.

[29]  H. Kantarjian,et al.  Ras oncogene mutations are rare late stage events in chronic myelogenous leukemia. , 1989, Blood.

[30]  K B McCredie,et al.  Characteristics of accelerated disease in chronic myelogenous leukemia , 1988, Cancer.

[31]  J. Goldman,et al.  GENOMIC ALTERATIONS INVOLVING THE C-MYC PROTO-ONCOGENE LOCUS DURING THE EVOLUTION OF A CASE OF CHRONIC GRANULOCYTIC LEUKAEMIA , 1984, The Lancet.

[32]  M. Pike,et al.  Conservatism of the approximation sigma (O-E)2-E in the logrank test for survival data or tumor incidence data. , 1973, Biometrics.

[33]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[34]  G. Gaidano,et al.  Genetic analysis of p53 and RB1 tumor-suppressor genes in blast crisis of chronic myeloid leukemia , 2005, Annals of Hematology.

[35]  A. Iolascon,et al.  Expression of cell cycle regulatory genes in chronic myelogenous leukemia. , 1998, Haematologica.

[36]  E. Campo,et al.  Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. , 1997, Blood.