A 210-GHz Amplifier in 40-nm Digital CMOS Technology
暂无分享,去创建一个
Chun-Lin Ko | Da-Chiang Chang | Ming-Ching Kuo | Chien-Nan Kuo | Chun-Hsing Li | Chun-Hsing Li | Chun-Lin Ko | M. Kuo | D. Chang | C. Kuo
[1] Jeng-Han Tsai,et al. A W-Band Medium Power Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.
[2] M. Seo,et al. A 150 GHz Amplifier With 8 dB Gain and 6 dBm in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines , 2009 .
[3] Dongha Shim,et al. Components for generating and phase locking 390-GHz signal in 45-nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).
[4] Q. J. Gu,et al. Two-Way Current-Combining $W$-Band Power Amplifier in 65-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.
[5] G. Gonzalez. Microwave Transistor Amplifiers: Analysis and Design , 1984 .
[6] Behzad Razavi,et al. A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.
[7] Qun Jane Gu,et al. A Three Stage, Fully Differential 128–157 GHz CMOS Amplifier with Wide Band Matching , 2011, IEEE Microwave and Wireless Components Letters.
[8] Ehsan Afshari,et al. A high gain 107 GHz amplifier in 130 nm CMOS , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).
[9] B. Heydari,et al. Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.
[10] Ali M. Niknejad,et al. A 0.38THz fully integrated transceiver utilizing quadrature push-push circuitry , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.
[11] F. Gianesello,et al. 65 nm RFCMOS technologies with bulk and HR SOI substrate for millimeter wave passives and circuits characterized up to 220 GHZ , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.
[12] Dow-Chih Niu,et al. A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.
[13] Zhiwei Xu,et al. 200GHz CMOS prescalers with extended dividing range via time-interleaved dual injection locking , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.
[14] 258.16-259.95 GHz injection-locked frequency divider , 2010 .
[15] A. Mangan,et al. De-embedding transmission line measurements for accurate modeling of IC designs , 2006, IEEE Transactions on Electron Devices.
[16] R. Henderson,et al. Performance of coplanar interconnects for millimeter-wave applications , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.
[17] Munkyo Seo,et al. A 150 GHz Amplifier With 8 dB Gain and $+$6 dBm $P_{\rm sat}$ in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines , 2009, IEEE Journal of Solid-State Circuits.
[18] Mikko Kärkkäinen,et al. W-Band CMOS Amplifiers Achieving +10 dBm Saturated Output Power and 7.5 dB NF , 2009, IEEE J. Solid State Circuits.
[19] Chun-Hsing Li,et al. 16.9-mW 33.7-dB gain mmWave receiver front-end in 65 nm CMOS , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.
[20] Ali M. Niknejad,et al. A 0.38 THz Fully Integrated Transceiver Utilizing a Quadrature Push-Push Harmonic Circuitry in SiGe BiCMOS , 2012, IEEE Journal of Solid-State Circuits.
[21] Qun Jane Gu,et al. 200 GHz CMOS amplifier working close to device f T , 2011 .
[22] Ali Hajimiri,et al. Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .
[23] Gabriel M. Rebeiz,et al. $W$ -Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.
[24] Chun-Lin Ko,et al. On-Chip Transmission Line Modeling and Applications to Millimeter-Wave Circuit Design in 0.13um CMOS Technology , 2007, 2007 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).
[25] Yen-Hsiang Wang,et al. A CMOS 135–150 GHz 0.4 dBm EIRP transmitter with 5.1dB P1dB extension using IF envelope feed-forward gain compensation , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.
[26] A. Leuther,et al. A 200 GHz active heterodyne receiver MMIC with low sub-harmonic LO power requirements for imaging frontends , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).
[27] Ryuichi Fujimoto,et al. A 120 GHz / 140 GHz dual-channel ASK receiver using standard 65 nm CMOS technology , 2011, 2011 6th European Microwave Integrated Circuit Conference.
[28] M.T. Yang,et al. On the millimeter-wave characteristics and model of on-chip interconnect transmission lines up to 110 GHz , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..
[29] A. Tomkins,et al. A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.
[30] M. Urteaga,et al. A 58.4mW solid-state power amplifier at 220 GHz using InP HBTs , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.
[31] S.P. Voinigescu,et al. The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.
[32] P. Schvan,et al. Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.
[33] Patrick Reynaert,et al. A 100 GHz transformer-coupled fully differential amplifier in 90 nm CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.
[34] Mikko Kärkkäinen,et al. Millimeter-Wave Integrated Circuits in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.
[35] I.C.H. Lai,et al. High-Q Slow-Wave Transmission Line for Chip Area Reduction on Advanced CMOS Processes , 2007, 2007 IEEE International Conference on Microelectronic Test Structures.
[36] S.P. Voinigescu,et al. 165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.