A 210-GHz Amplifier in 40-nm Digital CMOS Technology

This paper presents a 210-GHz amplifier design in 40-nm digital bulk CMOS technology. The theoretical maximum voltage gain that an amplifier can achieve and the loss of a matching network are derived for the optimization of a few hundred gigahertz amplifiers. Accordingly, the bias and size of transistors, circuit topology, and inter-stage coupling method can be determined methodically to maximize the amplifier gain. The measured results show that the amplifier exhibits a peak power gain of 10.5 dB at 213.5 GHz and an estimated 3-dB bandwidth of 13 GHz. The power consumption is only 42.3 mW under a 0.8-V supply. To the best of the authors' knowledge, this work demonstrates the CMOS amplifier with highest operation frequency reported thus far.

[1]  Jeng-Han Tsai,et al.  A W-Band Medium Power Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[2]  M. Seo,et al.  A 150 GHz Amplifier With 8 dB Gain and 6 dBm in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines , 2009 .

[3]  Dongha Shim,et al.  Components for generating and phase locking 390-GHz signal in 45-nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[4]  Q. J. Gu,et al.  Two-Way Current-Combining $W$-Band Power Amplifier in 65-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[5]  G. Gonzalez Microwave Transistor Amplifiers: Analysis and Design , 1984 .

[6]  Behzad Razavi,et al.  A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[7]  Qun Jane Gu,et al.  A Three Stage, Fully Differential 128–157 GHz CMOS Amplifier with Wide Band Matching , 2011, IEEE Microwave and Wireless Components Letters.

[8]  Ehsan Afshari,et al.  A high gain 107 GHz amplifier in 130 nm CMOS , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[9]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[10]  Ali M. Niknejad,et al.  A 0.38THz fully integrated transceiver utilizing quadrature push-push circuitry , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[11]  F. Gianesello,et al.  65 nm RFCMOS technologies with bulk and HR SOI substrate for millimeter wave passives and circuits characterized up to 220 GHZ , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[12]  Dow-Chih Niu,et al.  A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[13]  Zhiwei Xu,et al.  200GHz CMOS prescalers with extended dividing range via time-interleaved dual injection locking , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[14]  258.16-259.95 GHz injection-locked frequency divider , 2010 .

[15]  A. Mangan,et al.  De-embedding transmission line measurements for accurate modeling of IC designs , 2006, IEEE Transactions on Electron Devices.

[16]  R. Henderson,et al.  Performance of coplanar interconnects for millimeter-wave applications , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[17]  Munkyo Seo,et al.  A 150 GHz Amplifier With 8 dB Gain and $+$6 dBm $P_{\rm sat}$ in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines , 2009, IEEE Journal of Solid-State Circuits.

[18]  Mikko Kärkkäinen,et al.  W-Band CMOS Amplifiers Achieving +10 dBm Saturated Output Power and 7.5 dB NF , 2009, IEEE J. Solid State Circuits.

[19]  Chun-Hsing Li,et al.  16.9-mW 33.7-dB gain mmWave receiver front-end in 65 nm CMOS , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[20]  Ali M. Niknejad,et al.  A 0.38 THz Fully Integrated Transceiver Utilizing a Quadrature Push-Push Harmonic Circuitry in SiGe BiCMOS , 2012, IEEE Journal of Solid-State Circuits.

[21]  Qun Jane Gu,et al.  200 GHz CMOS amplifier working close to device f T , 2011 .

[22]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[23]  Gabriel M. Rebeiz,et al.  $W$ -Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[24]  Chun-Lin Ko,et al.  On-Chip Transmission Line Modeling and Applications to Millimeter-Wave Circuit Design in 0.13um CMOS Technology , 2007, 2007 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[25]  Yen-Hsiang Wang,et al.  A CMOS 135–150 GHz 0.4 dBm EIRP transmitter with 5.1dB P1dB extension using IF envelope feed-forward gain compensation , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[26]  A. Leuther,et al.  A 200 GHz active heterodyne receiver MMIC with low sub-harmonic LO power requirements for imaging frontends , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).

[27]  Ryuichi Fujimoto,et al.  A 120 GHz / 140 GHz dual-channel ASK receiver using standard 65 nm CMOS technology , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[28]  M.T. Yang,et al.  On the millimeter-wave characteristics and model of on-chip interconnect transmission lines up to 110 GHz , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[29]  A. Tomkins,et al.  A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[30]  M. Urteaga,et al.  A 58.4mW solid-state power amplifier at 220 GHz using InP HBTs , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[31]  S.P. Voinigescu,et al.  The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.

[32]  P. Schvan,et al.  Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.

[33]  Patrick Reynaert,et al.  A 100 GHz transformer-coupled fully differential amplifier in 90 nm CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[34]  Mikko Kärkkäinen,et al.  Millimeter-Wave Integrated Circuits in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[35]  I.C.H. Lai,et al.  High-Q Slow-Wave Transmission Line for Chip Area Reduction on Advanced CMOS Processes , 2007, 2007 IEEE International Conference on Microelectronic Test Structures.

[36]  S.P. Voinigescu,et al.  165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.