Morphological and structural evolution of Si-Cu nanocomposites by an instantaneous vapor-liquid-solid growth and the electrochemical lithiation/delithiation performances

[1]  Zhong Lin Wang,et al.  Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. , 2018, ACS nano.

[2]  Qiang Wu,et al.  Binder-free anode with porous Si/Cu architecture for lithium-ion batteries , 2018 .

[3]  Kui Liang,et al.  Facile preparation of nanoscale silicon as an anode material for lithium ion batteries by a mild temperature metathesis route , 2018 .

[4]  X. Qin,et al.  Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities , 2018 .

[5]  Wenquan Lu,et al.  Investigations of Si Thin Films as Anode of Lithium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[6]  Runze Liu,et al.  A Catalytic Microwave Process for Superfast Preparation of High-Quality Reduced Graphene Oxide. , 2017, Angewandte Chemie.

[7]  Cheng Chen,et al.  High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries , 2017 .

[8]  Deren Yang,et al.  Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials , 2017 .

[9]  Yaolin Xu,et al.  A high-performance Li-ion anode from direct deposition of Si nanoparticles , 2017 .

[10]  KwangSup Eom,et al.  Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries , 2017 .

[11]  Si-Jin Kim,et al.  3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries , 2017 .

[12]  Liangming Wei,et al.  Porous Sandwiched Graphene/Silicon Anodes for Lithium Storage , 2017 .

[13]  Jijun Zhao,et al.  Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation , 2017 .

[14]  A. Manthiram,et al.  Low-cost carbon-coated Si-Cu 3 Si-Al 2 O 3 nanocomposite anodes for high-performance lithium-ion batteries , 2016 .

[15]  G. Cao,et al.  Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries , 2016 .

[16]  Aravindaraj G. Kannan,et al.  Enhancement of the electrochemical performance of silicon anodes through alloying with inert metals and encapsulation by graphene nanosheets , 2016 .

[17]  Ya‐Xia Yin,et al.  Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries , 2016 .

[18]  K. Amine,et al.  Si–Cu alloy nanowires grown by oblique angle deposition as a stable negative electrode for Li-ion batteries , 2016, Journal of Materials Science.

[19]  Peixin Zhang,et al.  Si/Ni3Si-Encapulated Carbon Nanofiber Composites as Three-Dimensional Network Structured Anodes for Lithium-ion Batteries , 2016 .

[20]  Junwei Wu,et al.  A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries , 2016 .

[21]  K. Amine,et al.  Compositionally-graded silicon–copper helical arrays as anodes for lithium-ion batteries , 2016 .

[22]  Qin Hao,et al.  Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries , 2016, Nano Research.

[23]  Qianran He,et al.  Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. , 2016, Nanoscale.

[24]  O. Keles,et al.  Functionally Graded Si Based Thin Films as Negative Electrodes for Next Generation Lithium Ion Batteries , 2016 .

[25]  K. Amine,et al.  Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery , 2015 .

[26]  Xi Cao,et al.  A three layer design with mesoporous silica encapsulated by a carbon core and shell for high energy lithium ion battery anodes , 2015 .

[27]  W. Wang,et al.  SiC@Si core–shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries , 2015 .

[28]  Rui-jun Ma,et al.  Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg2Si as an anode material for Li-ion batteries , 2015 .

[29]  G. Cao,et al.  Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge , 2015 .

[30]  T. Osaka,et al.  One-minute deposition of micrometre-thick porous Si-Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries , 2015 .

[31]  O. Keles,et al.  Improving Si Anode Performance by Forming Copper Capped Copper-Silicon Thin Film Anodes for Rechargeable Lithium Ion Batteries , 2015 .

[32]  Kaiqi Xu,et al.  Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Cu3Si nanowires , 2015 .

[33]  O. Keles,et al.  Multi-layered Cu/Si nanorods and its use for lithium ion batteries , 2015 .

[34]  K. Amine,et al.  Well-aligned, ordered, nanocolumnar, Cu–Si thin film as anode material for lithium-ion batteries , 2014 .

[35]  H. Usui,et al.  Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites , 2014 .

[36]  Fanghong Xue,et al.  Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode , 2014 .

[37]  H. Usui,et al.  Gadolinium silicide/silicon composite with excellent high-rate performance as lithium-ion battery anode , 2014 .

[38]  Alessandro Rufoloni,et al.  Electrochemical characterization of silicon nanowires as an anode for lithium batteries , 2014 .

[39]  Chia‐Chin Chang,et al.  Sputtered copper coating on silicon/graphite composite anode for lithium ion batteries , 2014 .

[40]  Dingsheng Wang,et al.  High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization , 2014 .

[41]  G. Cao,et al.  Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. , 2014, Nanoscale.

[42]  G. Cao,et al.  Preparation and Electrochemical properties of Fe-Sn (C) Nanocomposites as Anode for Lithium-ion Batteries , 2014 .

[43]  Sanghwa Lee,et al.  Microscopic analysis of thermally-driven formation of Cu-Si alloy nanoparticles in a Cu/Si template , 2013 .

[44]  F. Wang,et al.  Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries , 2013, Scientific Reports.

[45]  F. Wang,et al.  Hollow Porous SiO 2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries , 2013 .

[46]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[47]  Yiping Zhao,et al.  The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties , 2012, Nanotechnology.

[48]  A. P. Bell,et al.  Free-Standing, Single-Crystal Cu3Si Nanowires , 2012 .

[49]  Justin T. Harris,et al.  Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries , 2012 .

[50]  Yiping Zhao,et al.  Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries , 2011 .

[51]  K. Richter,et al.  Experimental investigation of the Cu–Si phase diagram at x(Cu)>0.72 , 2011, Intermetallics.

[52]  V. Srinivasan,et al.  Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries , 2011, 1108.0340.

[53]  Xiaoping Song,et al.  Reactive synthesis of porous Cu3Si compound , 2011 .

[54]  Huixin Chen,et al.  Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries , 2011 .

[55]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[56]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[57]  J. Mosby,et al.  Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties , 2010 .

[58]  Yanzhao Cui,et al.  Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process , 2010 .

[59]  Barbara Laïk,et al.  Silicon nanowires as negative electrode for lithium-ion microbatteries , 2008 .

[60]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[61]  Nitin Kumar,et al.  In situ integration of freestanding zinc oxide nanorods using copper silicide nanobeams , 2007 .

[62]  Dylan Kipp,et al.  Carbon nanotube cantilevers on self-aligned copper silicide nanobeams , 2007 .

[63]  I. Koleva,et al.  Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures , 2007 .

[64]  S. Fan,et al.  Si nanowires synthesized with Cu catalyst , 2007 .

[65]  Heon-Cheol Shin,et al.  Porous silicon negative electrodes for rechargeable lithium batteries , 2005 .

[66]  Richard R. Chromik,et al.  Thermodynamic and kinetic study of solid state reactions in the Cu-Si system , 1999 .

[67]  Lun-Lun Chen,et al.  The dependence of room‐temperature oxidation of silicon catalyzed by Cu3Si on the silicide grain size , 1994 .

[68]  L. Krusin-Elbaum,et al.  Electrical transport in thin films of copper silicide , 1991 .

[69]  F. d'Heurle,et al.  Room‐temperature oxidation of silicon catalyzed by Cu3Si , 1990 .

[70]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[71]  E. Bauer,et al.  Clausius-Clapeyron equation analysis of two- dimensional vaporization , 1985 .

[72]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[73]  M. Neuberger SILICON: ELECTRICAL CONDUCTIVITY DATA SHEETS , 1963 .

[74]  Irving Langmuir,et al.  The Vapor Pressure of Metallic Tungsten , 1913 .