Temporal evolution of shallow marine diagenetic environments: Insights from carbonate concretions

[1]  T. Lenton,et al.  Extreme variability in atmospheric oxygen levels in the late Precambrian , 2022, Science advances.

[2]  G. Shields,et al.  Decoupled oxygenation of the Ediacaran ocean and atmosphere during the rise of early animals , 2022, Earth and Planetary Science Letters.

[3]  N. Planavsky,et al.  On carbon burial and net primary production through Earth's history , 2022, American Journal of Science.

[4]  S. Loyd,et al.  Progressive formation of authigenic carbonate with depth in siliciclastic marine sediments including substantial formation in sediments experiencing methanogenesis , 2022, Chemical Geology.

[5]  D. Catling,et al.  Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen , 2021, Geobiology.

[6]  S. Occhipinti,et al.  A significant seawater sulfate reservoir at 2.0 Ga determined from multiple sulfur isotope analyses of the Paleoproterozoic Degrussa Cu-Au volcanogenic massive sulfide deposit, Western Australia , 2021 .

[7]  D. Catling,et al.  High Organic Burial Efficiency Is Required to Explain Mass Balance in Earth's Early Carbon Cycle , 2021, Global Biogeochemical Cycles.

[8]  K. Kirsimäe,et al.  The grandest of them all: the Lomagundi–Jatuli Event and Earth's oxygenation , 2020, Journal of the Geological Society.

[9]  D. Schrag,et al.  The role of authigenic carbonate in Neoproterozoic carbon isotope excursions , 2020 .

[10]  L. Kah,et al.  Constraints on Meso- to Neoproterozoic seawater from ancient evaporite deposits , 2020 .

[11]  P. Meister,et al.  The Carbon-Isotope Record of the Sub-Seafloor Biosphere , 2019 .

[12]  B. Jørgensen,et al.  Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater: An evaluation by reaction-transport modelling , 2019, Journal of Marine Systems.

[13]  R. Dasgupta,et al.  Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon , 2019, Nature Geoscience.

[14]  A. Turchyn,et al.  Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments , 2019, Earth and Planetary Science Letters.

[15]  Dongjie Tang,et al.  Growth mechanisms and environmental implications of carbonate concretions from the ~ 1.4 Ga Xiamaling Formation, North China , 2019, Journal of Palaeogeography.

[16]  D. Canfield,et al.  Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry , 2019, Nature Geoscience.

[17]  S. Peters,et al.  Nature of the sedimentary rock record and its implications for Earth system evolution. , 2018, Emerging topics in life sciences.

[18]  E. Sperling,et al.  The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an "Explosion". , 2018, Integrative and comparative biology.

[19]  K. Kirsimäe,et al.  Two-billion-year-old evaporites capture Earth’s great oxidation , 2018, Science.

[20]  T. Lenton,et al.  COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time , 2018 .

[21]  S. Katsev,et al.  Sedimentary sulfur isotopes and Neoarchean ocean oxygenation , 2018, Science Advances.

[22]  Yosuke Hoshino,et al.  The rise of algae in Cryogenian oceans and the emergence of animals , 2017, Nature.

[23]  D. Martill,et al.  Isotope and elemental geochemistry of black shale‐hosted fossiliferous concretions from the Cretaceous Santana Formation fossil Lagerstätte (Brazil) , 2017 .

[24]  W. Berelson,et al.  The modern record of “concretionary” carbonate: Reassessing a discrepancy between modern sediments and the geologic record , 2016 .

[25]  J. Skei Permanently Anoxie Marine Basins - Exchange of Substances Across Boundaries. , 2016 .

[26]  I. Maruyama,et al.  Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales , 2015, Scientific Reports.

[27]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[28]  Xi Chen,et al.  Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals , 2015, Nature Communications.

[29]  T. Bontognali,et al.  Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo‐/Neoproterozoic stromatolites? , 2015, Geobiology.

[30]  D. Canfield,et al.  Reconstruction of secular variation in seawater sulfate concentrations , 2014 .

[31]  A. Wetzel,et al.  Deep‐burial alteration of early‐diagenetic carbonate concretions formed in Palaeozoic deep‐marine greywackes and mudstones (Bardo Unit, Sudetes Mountains, Poland) , 2014 .

[32]  A. Muggeridge,et al.  Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes , 2014 .

[33]  M. Kuypers,et al.  Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane , 2014 .

[34]  Haiou Qiu,et al.  Early Triassic seawater sulfate drawdown , 2014 .

[35]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[36]  B. Jørgensen,et al.  Quantifying the degradation of organic matter in marine sediments: A review and synthesis , 2013 .

[37]  J. Grotzinger,et al.  Sulfate availability and the geological record of cold-seep deposits , 2013 .

[38]  A. Bekker,et al.  Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales , 2013 .

[39]  B. Jørgensen,et al.  Control of sulphate and methane distributions in marine sediments by organic matter reactivity , 2013 .

[40]  D. Schrag,et al.  Authigenic Carbonate and the History of the Global Carbon Cycle , 2013, Science.

[41]  J. Eiler,et al.  Determining the Diagenetic Conditions of Concretion Formation: Assessing Temperatures and Pore Waters Using Clumped Isotopes , 2012 .

[42]  A. Bekker,et al.  Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event , 2012, Proceedings of the National Academy of Sciences.

[43]  A. Anbar,et al.  Ocean oxygenation in the wake of the Marinoan glaciation , 2012, Nature.

[44]  S. Peters,et al.  Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle , 2012, Science.

[45]  A. Bekker,et al.  Oxygen overshoot and recovery during the early Paleoproterozoic , 2012 .

[46]  M. Gibling,et al.  Palaeozoic landscapes shaped by plant evolution , 2012 .

[47]  G. Shields-Zhou,et al.  The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling , 2012 .

[48]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[49]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[50]  N. Dauphas,et al.  Iron and carbon isotope evidence for microbial iron respiration throughout the Archean , 2010 .

[51]  L. Kump,et al.  Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction , 2010 .

[52]  A. Bekker,et al.  Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: A review of occurrences in Brazil, India, and Uruguay , 2010 .

[53]  D. Schrag,et al.  Explaining the Structure of the Archean Mass-Independent Sulfur Isotope Record , 2010, Science.

[54]  D. Canfield,et al.  Spatial variability in oceanic redox structure 1.8 billion years ago , 2010 .

[55]  B. Sageman,et al.  Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2 , 2010 .

[56]  A. Knoll,et al.  Clay Mineralogy, Organic Carbon Burial, and Redox Evolution in Proterozoic Oceans , 2010 .

[57]  C. Reinhard,et al.  Redox Redux , 2009, Geobiology.

[58]  M. Kennedy,et al.  The late Precambrian greening of the Earth , 2009, Nature.

[59]  M. Torres,et al.  The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin , 2009 .

[60]  D. Bradley Passive margins through earth history , 2008 .

[61]  D. Hutchinson,et al.  Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico , 2008 .

[62]  R. Summons,et al.  Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri , 2008 .

[63]  H. Strauss,et al.  Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa , 2008 .

[64]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[65]  T. Lyons,et al.  Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir , 2007 .

[66]  R. Zeebe Modeling CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater: Implications for paleo-proxies in benthic foraminifera , 2007 .

[67]  U. Wortmann,et al.  Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling , 2007, Nature.

[68]  D. Burdige Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? , 2007, Chemical reviews.

[69]  D. Evans Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes , 2006, Nature.

[70]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Mary Droser,et al.  Late Precambrian Oxygenation; Inception of the Clay Mineral Factory , 2006, Science.

[72]  D. Burdige,et al.  Burial of terrestrial organic matter in marine sediments: A re‐assessment , 2005 .

[73]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[74]  M. Droser,et al.  A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah , 2005 .

[75]  D. Schrag,et al.  Rates of methanogenesis and methanotrophy in deep‐sea sediments , 2005 .

[76]  S. Hedges,et al.  A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land , 2004, BMC Evolutionary Biology.

[77]  Linda C. Kah,et al.  Low marine sulphate and protracted oxygenation of the Proterozoic biosphere , 2004, Nature.

[78]  C. Paull,et al.  Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California , 2004 .

[79]  R. Berner A model for calcium, magnesium and sulfate in seawater over Phanerozoic time , 2004 .

[80]  J. Bartley,et al.  Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle , 2004 .

[81]  J. Seewald Organic–inorganic interactions in petroleum-producing sedimentary basins , 2003, Nature.

[82]  R. V. Demicco,et al.  Secular variation in seawater chemistry and the origin of calcium chloride basinal brines , 2003 .

[83]  J. Grotzinger,et al.  Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada: Record of Cratonic-Scale Salinity Crisis , 2003 .

[84]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[85]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[86]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[87]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[88]  A. J. Kaufman,et al.  The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? , 2002 .

[89]  K. Hinrichs Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? , 2002 .

[90]  R. Hill,et al.  Mineral Surface Control of Organic Carbon in Black Shale , 2002, Science.

[91]  D. Vachard,et al.  The role of diagenetic carbonate concretions in the preservation of the original sedimentary record , 2001 .

[92]  J. Horita Carbon isotope exchange in the system CO2-CH4 at elevated temperatures , 2001 .

[93]  R. Schneider,et al.  Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates , 2000 .

[94]  Michael A. Arthur,et al.  Interpreting carbon-isotope excursions: carbonates and organic matter , 1999 .

[95]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[96]  Michael J. Whiticar,et al.  Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane , 1999 .

[97]  A. Taira,et al.  Sulfur isotope records around Livello Bonarelli (northern Apennines, Italy) black shale at the Cenomanian-Turonian boundary , 1999 .

[98]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[99]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[100]  R. Benner,et al.  What happens to terrestrial organic matter in the ocean , 2004 .

[101]  Peter R. Crane,et al.  The origin and early evolution of plants on land , 1997, Nature.

[102]  M. Thomm,et al.  Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction , 1996 .

[103]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[104]  A. Fallick,et al.  A widespread positive ?13Ccarbanomaly at around 2.33?2.06 Ga on the Fennoscandian Shield: a paradox? , 1996 .

[105]  N. Blair,et al.  Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments , 1996 .

[106]  R. Duck Subaqueous shrinkage cracks and early sediment fabrics preserved in Pleistocene calcareous concretions , 1995, Journal of the Geological Society.

[107]  R. McNutt,et al.  Systematic decrease of high δ13C values with burial in late Archaean (2.8 Ga) diagenetic dolomite: evidence for methanogenesis from the Crixás Greenstone Belt, Brazil , 1995 .

[108]  K. Pye,et al.  Early diagenetic mineralization and fossil preservation in modern carbonate concretions , 1994 .

[109]  F. Prahl,et al.  Sorptive preservation of labile organic matter in marine sediments , 1994, Nature.

[110]  I. Sunagawa Chapter 2 Nucleation, Growth And Dissolution Of Crystals During Sedimentogenesis and Diagenesis , 1994 .

[111]  M. Coleman Microbial processes: Controls on the shape and composition of carbonate concretions , 1993 .

[112]  S. Burns,et al.  Oxygen and carbon isotopic composition of marine carbonate concretions; an overview , 1993 .

[113]  T. J. Palmer,et al.  Reworked early diagenetic concretions and the bioerosional origin of a regional discontinuity within British Jurassic marine mudstones , 1992 .

[114]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[115]  A. J. Kaufman,et al.  Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes , 1992 .

[116]  I. Scotchman The geochemistry of concretions from the Kimmeridge Clay Formation of southern and eastern England , 1991 .

[117]  D. Canfield,et al.  A new model for atmospheric oxygen over Phanerozoic time. , 1989, American journal of science.

[118]  D. Bottjer,et al.  Limestone concretion growth documented by trace-fossil relations , 1988 .

[119]  S. Burns,et al.  A geochemical study of dolomite in the Monterey Formation, California , 1987 .

[120]  R. Berner,et al.  Pyrite and organic matter in Phanerozoic normal marine shales , 1986 .

[121]  Michael J. Whiticar,et al.  Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence , 1986 .

[122]  S. Emerson,et al.  Partitioning and transport of metals across the O2H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway☆ , 1985 .

[123]  C. Blome,et al.  Carbonate concretions: an ideal sedimentary host for microfossils. , 1985 .

[124]  K. Kvenvolden,et al.  Concentrations and carbon isotopic compositions of CH4 and CO2 in gas from sediments of the Blake Outer Ridge, Deep Sea Drilling Project Leg 76 , 1983 .

[125]  J. Mahoney,et al.  Authigenic Dolomite in Monterey Formation, California, and Related Rocks from Offshore California and Baja California: ABSTRACT , 1981 .

[126]  A. B. Ronov,et al.  Quantitative analysis of Phanerozoic sedimentation , 1980 .

[127]  H. Ohmoto Isotopes of sulfur and carbon , 1979 .

[128]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[129]  M. Coleman,et al.  Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments , 1977, Nature.

[130]  M. Schidlowski,et al.  Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia , 1976 .

[131]  M. Schidlowski,et al.  Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget☆ , 1975 .

[132]  B. Eadie,et al.  Kerogen Recycling in the Ross Sea, Antarctica , 1974, Science.

[133]  S. Calvert,et al.  The geochemistry of iodine in oxidised and reduced recent marine sediments , 1973 .

[134]  James J. Anderson,et al.  Deep water renewal in Saanich Inlet, an intermittently anoxic basin , 1973 .

[135]  R. Raiswell THE GROWTH OF CAMBRIAN AND LIASSIC CONCRETIONS , 1971 .

[136]  J. Vogel,et al.  Carbon isotope fractionation during the precipitation of calcium carbonate , 1970 .

[137]  Y. Bottinga Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor , 1969 .

[138]  T C Stadtman,et al.  Methane fermentation. , 1967, Annual Review of Microbiology.

[139]  T. Koyama Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen , 1963 .