Elliptic curves with a given number of points over finite fields

Abstract Given an elliptic curve E and a positive integer N, we consider the problem of counting the number of primes p for which the reduction of E modulo p possesses exactly N points over 𝔽p. On average (over a family of elliptic curves), we show bounds that are significantly better than what is trivially obtained by the Hasse bound. Under some additional hypotheses, including a conjecture concerning the short-interval distribution of primes in arithmetic progressions, we obtain an asymptotic formula for the average.

[1]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[2]  D. A. Burgess On Character Sums and L-Series. II , 1962 .

[3]  H. Davenport Multiplicative Number Theory , 1967 .

[4]  H. Trotter,et al.  Frobenius Distributions in GL2-Extensions , 1976 .

[5]  Alan Baker,et al.  MULTIPLICATIVE NUMBER THEORY (Graduate Texts in Mathematics, 74) , 1982 .

[6]  Henri Cohen,et al.  Heuristics on class groups , 1984 .

[7]  Henri Cohen,et al.  Heuristics on class groups of number fields , 1984 .

[8]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[9]  N. Koblitz PRIMALITY OF THE NUMBER OF POINTS ON AN ELLIPTIC CURVE OVER A FINITE FIELD , 1988 .

[10]  N. Elkies Distribution of supersingular primes , 1991 .

[11]  M. Murty,et al.  On the Distribution of Supersingular Primes , 1996, Canadian Journal of Mathematics.

[12]  Kevin James Clemson,et al.  Average Frobenius distribution of elliptic curves , 1998 .

[13]  F. Pappalardi AVERAGE FROBENIUS DISTRIBUTION FOR INERTS IN Q(i) , 2003 .

[14]  A. Granville,et al.  The distribution of values of L(1, χd) , 2003 .

[15]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[16]  K. James Average frobenius distributions for elliptic curves with 3-torsion , 2004 .

[17]  Francesco Pappalardi,et al.  Average Frobenius distribution for inerts in $Bbb Q(i)$ , 2004 .

[18]  Glyn Harman,et al.  ANALYTIC NUMBER THEORY (American Mathematical Society Colloquium Publications 53) , 2005 .

[19]  Emmanuel Kowalski,et al.  Analytic problems for elliptic curves , 2005, math/0510197.

[20]  D. Ivanov,et al.  Average Frobenius distributions for elliptic curves with nontrivial rational torsion , 2005 .

[21]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[22]  A. Balog,et al.  Average twin prime conjecture for elliptic curves , 2007 .

[23]  The Distribution of Values of L(1; ) , 2007 .

[24]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[25]  Alessandro Languasco,et al.  ON THE MONTGOMERY–HOOLEY THEOREM IN SHORT INTERVALS , 2010 .

[26]  Neil J. Calkin,et al.  Average Frobenius distributions for elliptic curves over abelian extensions , 2011 .

[27]  K. James,et al.  Average Frobenius distribution for elliptic curves defined over finite Galois extensions of the rationals , 2011, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Elliptic curves with a given number of points over finite fields , 2011, 1108.3539.

[29]  Chantal David,et al.  A Cohen–Lenstra phenomenon for elliptic curves , 2014, J. Lond. Math. Soc..