On Counting Integral Points in a Convex Rational Polytope
暂无分享,去创建一个
[1] Michele Vergne,et al. Residues formulae for volumes and Ehrhart polynomials of convex polytopes. , 2001, math/0103097.
[2] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[3] E. Ehrhardt,et al. Sur un problème de géométrie diophantienne linéaire. II. , 1967 .
[4] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[5] Matthias Beck,et al. Counting Lattice Points by Means of the Residue Theorem , 2000 .
[6] A. Seidenberg. Constructions in algebra , 1974 .
[7] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[8] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[9] M. Brion,et al. Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .
[10] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[11] Matthias Beck,et al. The Frobenius Problem, Rational Polytopes, and Fourier–Dedekind Sums , 2002 .
[12] Matthias Beck. Multidimensional Ehrhart Reciprocity , 2002, J. Comb. Theory, Ser. A.
[13] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[14] Jean B. Lasserre,et al. A Laplace transform algorithm for the volume of a convex polytope , 2001, JACM.
[15] J.-M. Kantor,et al. Une application du Théorème de Riemann-Roch combinatoire au polynôme d'Ehrhart des polytopes entiers de Rd , 1993 .
[16] Alexander I. Barvinok,et al. A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.