On Counting Integral Points in a Convex Rational Polytope

Given a convex rational polytope ?( b) := { x ? R n+ |Ax = b}, we consider the functionb ?f( b), which counts the nonnegative integral points of ?( b). A closed form expression of its Z-transformz?F( z) is easily obtained so thatf( b) can be computed as the inverse Z-transform of F. We then provide two variants of an inversion algorithm. As a by-product, one of the algorithms provides the Ehrhart polynomial of a convex integer polytope ?. We also provide an alternative that avoids the complex integration of F( z) and whose main computational effort is to solve a linear system. This latter approach is particularly attractive for relatively small values ofm, wherem is the number of nontrivial constraints (or rows ofA).

[1]  Michele Vergne,et al.  Residues formulae for volumes and Ehrhart polynomials of convex polytopes. , 2001, math/0103097.

[2]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[3]  E. Ehrhardt,et al.  Sur un problème de géométrie diophantienne linéaire. II. , 1967 .

[4]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[5]  Matthias Beck,et al.  Counting Lattice Points by Means of the Residue Theorem , 2000 .

[6]  A. Seidenberg Constructions in algebra , 1974 .

[7]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[8]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[9]  M. Brion,et al.  Residue formulae, vector partition functions and lattice points in rational polytopes , 1997 .

[10]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Matthias Beck,et al.  The Frobenius Problem, Rational Polytopes, and Fourier–Dedekind Sums , 2002 .

[12]  Matthias Beck Multidimensional Ehrhart Reciprocity , 2002, J. Comb. Theory, Ser. A.

[13]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[14]  Jean B. Lasserre,et al.  A Laplace transform algorithm for the volume of a convex polytope , 2001, JACM.

[15]  J.-M. Kantor,et al.  Une application du Théorème de Riemann-Roch combinatoire au polynôme d'Ehrhart des polytopes entiers de Rd , 1993 .

[16]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.