Algorithms for stochastic optimization with function or expectation constraints

This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with a function or expectation constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the constraint on devision variables. We show that this algorithm exhibits the optimal $${{{\mathcal {O}}}}(1/\epsilon ^2)$$ O ( 1 / ϵ 2 ) rate of convergence, in terms of both optimality gap and constraint violation, when the objective and constraint functions are generally convex, where $$\epsilon$$ ϵ denotes the optimality gap and infeasibility. Moreover, we show that this rate of convergence can be improved to $${{{\mathcal {O}}}}(1/\epsilon )$$ O ( 1 / ϵ ) if the objective and constraint functions are strongly convex. We then present a variant of CSA, namely the cooperative stochastic parameter approximation (CSPA) algorithm, to deal with the situation when the constraint is defined over problem parameters and show that it exhibits similar optimal rate of convergence to CSA. It is worth noting that CSA and CSPA are primal methods which do not require the iterations on the dual space and/or the estimation on the size of the dual variables. To the best of our knowledge, this is the first time that such optimal SA methods for solving function or expectation constrained stochastic optimization are presented in the literature.

[1]  H. Robbins A Stochastic Approximation Method , 1951 .

[2]  A Orman,et al.  Optimization of Stochastic Models: The Interface Between Simulation and Optimization , 2012, J. Oper. Res. Soc..

[3]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2007, ICML '07.

[4]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[5]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[6]  Y. Ermoliev Stochastic quasigradient methods and their application to system optimization , 1983 .

[7]  Guanghui Lan,et al.  Primal-dual first-order methods with O (1/e) iteration-complexity for cone programming. , 2011 .

[8]  Alexander Shapiro,et al.  Validation analysis of mirror descent stochastic approximation method , 2012, Math. Program..

[9]  George Ch. Pflug,et al.  Optimization of Stochastic Models , 1996 .

[10]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[11]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[12]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[13]  Amir Beck,et al.  The CoMirror algorithm for solving nonsmooth constrained convex problems , 2010, Oper. Res. Lett..

[14]  A. Ruszczynski,et al.  A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems , 1986 .

[15]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[16]  Yunmei Chen,et al.  Optimal Primal-Dual Methods for a Class of Saddle Point Problems , 2013, SIAM J. Optim..

[17]  Martin J. Wainwright,et al.  Randomized Smoothing for Stochastic Optimization , 2011, SIAM J. Optim..

[18]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[19]  Marc Teboulle,et al.  Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..

[20]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[21]  A. A. Gaivoronskii Nonstationary stochastic programming problems , 1978 .

[22]  Guanghui Lan,et al.  An optimal method for stochastic composite optimization , 2011, Mathematical Programming.

[23]  Saeed Ghadimi,et al.  Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization, II: Shrinking Procedures and Optimal Algorithms , 2013, SIAM J. Optim..

[24]  Heinz H. Bauschke,et al.  Bregman Monotone Optimization Algorithms , 2003, SIAM J. Control. Optim..

[25]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[26]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[27]  Renato D. C. Monteiro,et al.  Primal-dual first-order methods with $${\mathcal {O}(1/\epsilon)}$$ iteration-complexity for cone programming , 2011, Math. Program..

[28]  Mark W. Schmidt,et al.  Minimizing finite sums with the stochastic average gradient , 2013, Mathematical Programming.

[29]  Angelia Nedic,et al.  On Stochastic Subgradient Mirror-Descent Algorithm with Weighted Averaging , 2013, SIAM J. Optim..

[30]  Wei Wang,et al.  Sample average approximation of expected value constrained stochastic programs , 2008, Oper. Res. Lett..

[31]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[32]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[33]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[34]  Hao Jiang,et al.  On the Solution of Stochastic Optimization and Variational Problems in Imperfect Information Regimes , 2016, SIAM J. Optim..

[35]  Lin Xiao,et al.  Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..

[36]  Saeed Ghadimi,et al.  Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization I: A Generic Algorithmic Framework , 2012, SIAM J. Optim..