Indigenous amino acids in primitive CR meteorites

CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high-performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Our data show that EET 92042 and GRA 95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α-AIB and β-alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.

[1]  N. Lerner,et al.  The Strecker synthesis as a source of amino acids in carbonaceous chondrites: deuterium retention during synthesis. , 1993, Geochimica et cosmochimica acta.

[2]  James H. Doty,et al.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography‐time of flight‐mass spectrometry , 2006 .

[3]  P. Ehrenfreund,et al.  Free dicarboxylic and aromatic acids in the carbonaceous chondrites Murchison and Orgueil , 2006 .

[4]  K. Harada,et al.  Amino acid depleted carbonaceous chondrites (C2) from Antarctica , 1984 .

[5]  S. Pizzarello,et al.  Amino Acids in an Antarctic Carbonaceous Chondrite , 1979, Science.

[6]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[7]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[8]  Ronald A. Nieman,et al.  The Organic Content of the Tagish Lake Meteorite , 2001, Science.

[9]  Sherwood Chang,et al.  Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .

[10]  C. Boggs,et al.  Renewable and nonrenewable resources: Amino acid turnover and allocation to reproduction in Lepidoptera , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Ehrenfreund,et al.  Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites , 2007 .

[12]  Henry J Sun,et al.  An examination of the carbon isotope effects associated with amino acid biosynthesis. , 2006, Astrobiology.

[13]  D P Glavin,et al.  Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Bada,et al.  Re-examination of amino acids in Antarctic micrometeorites , 2004 .

[15]  J. Bada,et al.  Determination of alpha-dialkylamino acids and their enantiomers in geological samples by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. , 1995, Journal of chromatography. A.

[16]  R. Ogasawara,et al.  Dipeptides and Diketopiperazines in the Yamato-791198 and Murchison Carbonaceous Chondrites , 2002, Origins of life and evolution of the biosphere.

[17]  Susan Taylor,et al.  Concentration and variability of the AIB amino acid in polar micrometeorites: Implications for the exogenous delivery of amino acids to the primitive Earth , 2004 .

[18]  Keizo Yanai,et al.  AMINO ACIDS FROM THE YAMATO-791198 CARBONACEOUS CHONDRITE FROM ANTARCTICA , 1985 .

[19]  Keizo Yanai,et al.  Amino acids in the Yamato carbonaceous chondrite from Antarctica , 1979, Nature.

[20]  J. Oró,et al.  The organic composition of the Allan Hills carbonaceous chondrite (77306) as determined by pyrolysis-gas chromatography-mass spectrometry and other methods , 2005, Journal of Molecular Evolution.

[21]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[22]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[23]  A. Brearley,et al.  Mineralogy and Textural Characteristics of Fine-grained Rims in the Yamato 791198 CM2 Carbonaceous Chondrite: Constraints on the Location of Aqueous Alteration , 2003 .

[24]  F. Vajdos,et al.  Pseudomonas cepacia 2,2-dialkylglycine decarboxylase. Sequence and expression in Escherichia coli of structural and repressor genes. , 1990, The Journal of biological chemistry.

[25]  J. Grossman The Meteoritical Bulletin, No. 81 , 1997 .

[26]  C. Pillinger,et al.  The preservation state of organic matter in meteorites from Antarctica , 2004 .

[27]  Michel Maurette,et al.  A Search for Extraterrestrial Amino Acids in Carbonaceous Antarctic Micrometeorites , 1998, Origins of life and evolution of the biosphere.

[28]  J. Bada,et al.  A search for endogenous amino acids in the Martian meteorite EETA79001. , 1995, Geochimica et cosmochimica acta.

[29]  S. Pizzarello,et al.  The carbon isotopic distribution of Murchison amino acids , 2004 .

[30]  M. Keynes Organic compounds in carbonaceous meteorites , 2002 .

[31]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[32]  W J Stadelman,et al.  Amino acid composition of certain bacterial cell-wall proteins. , 1965, Applied microbiology.

[33]  J L Bada,et al.  The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[34]  S. Pizzarello,et al.  Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite. , 1995, Advances in space research : the official journal of the Committee on Space Research.

[35]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[36]  M. Prinz,et al.  The Grosvenor Mountains 95577 CR1 Chondrite and Hydration of the CR Chondrites , 2000 .

[37]  D P Glavin,et al.  A search for endogenous amino acids in martian meteorite ALH84001. , 1998, Science.

[38]  S. Pizzarello,et al.  The Organic Composition of a CR2 Chondrite: Differences and Similarities with the Mighei-type Meteorites , 2007 .

[39]  J. Grossman The Meteoritical Bulletin, No. 82, 1998 July , 1998 .

[40]  C. Ponnamperuma,et al.  Amino Acids in the Yamato-74662 Meteorite, an Antarctic Carbonaceous Chondrite , 1979 .

[41]  Gerhard Kminek,et al.  Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites , 2004, Origins of life and evolution of the biosphere.

[42]  P. E. Hare,et al.  Amino acids in a carbonaceous chondrite from Antarctica , 2005, Journal of Molecular Evolution.