Some theorems on the almost-periodic solutions of discrete dynamical systems

Abstract In this paper, we are concerned with almost periodic sequences. We study various types of almost periodic sequences arising in the literature and adapt their notions to the parametric framework. Then, similarly to the continuous case, we aim to prove variational principles. These variational principles are used to obtain some structural results and some theorems of existence in a Hilbert framework. We give, in particular, a discrete version of Amerio's criterion, and adapt a known method to the discrete time case in order to get an existence result on Hilbert space. The condition we obtain allows to find a classical known condition in the case where the system is linear with constant coefficients.

[1]  Vimal Singh,et al.  Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Vo-Khac Khoan Étude des fonctions quasi-stationnaires et de leurs applications aux équations différentielles opérationnelles , 1966 .

[3]  A. Zaslavski Existence and Structure of Extremals for One-Dimensional Nonautonomous Variational Problems , 1998 .

[4]  Geoffrey Fox,et al.  Intégration dans les groupes topologiques , 1971 .

[5]  Constantin Corduneanu,et al.  Almost periodic functions , 1968 .

[6]  I. Percival Variational principles for the invariant toroids of classical dynamics , 1974 .

[7]  Jean Favard Leçons sur les fonctions presque-périodiques , 1933 .

[8]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[9]  D. G. Figueiredo,et al.  Lectures on the ekeland variational principle with applications and detours , 1989 .

[10]  A. Zaslavski The Existence and Structure of Extremals for a Class of Second Order Infinite Horizon Variational Problems , 1995 .

[11]  C. Hommes Periodic, almost periodic and chaotic behaviour in Hicks' non-linear trade cycle model , 1993 .

[12]  G. Ladas,et al.  Oscillation Theory of Delay Differential Equations: With Applications , 1992 .

[13]  Harvey Cohn,et al.  Almost Periodic Functions , 1947 .

[14]  E. M. Wright A non-linear difference-differential equation. , 1946 .

[15]  V. V. Zhikov,et al.  Almost Periodic Functions and Differential Equations , 1983 .

[16]  I. Percival Variational Principles for Invariant Tori and Cantori , 2008, Hamiltonian Dynamical Systems.

[17]  A. Fink Almost Periodic Differential Equations , 1974 .

[18]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .