Structural and Magnetic Property of Cr3+ Substituted Cobalt Ferrite Nanomaterials Prepared by the Sol-Gel Method

Cobalt-chromium ferrite, CoCrxFe2−xO4 (x = 0–1.2), has been synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD) indicates that samples calcined at 800 °C for 3 h were a single-cubic phase. The lattice parameter decreased with increasing Cr concentration. Scanning electron microscopy (SEM) confirmed that the sample powders were nanoparticles. It was confirmed from the room temperature Mössbauer spectra that transition from the ferrimagnetic state to the superparamagnetic state occurred with the doping of chromium. Both the saturation magnetization and the coercivity decreased with the chromium doping. With a higher annealing temperature, the saturation magnetization increased and the coercivity increased initially and then decreased for CoCr0.2Fe1.8O4.

[1]  Q. Lin,et al.  Structural and Magnetic Studies of Cr3+ Substituted Nickel Ferrite Nanomaterials Prepared by Sol-Gel Auto-Combustion , 2018, Crystals.

[2]  Jianmei Xu,et al.  Magnetic and Mössbauer Spectroscopy Studies of Zinc-Substituted Cobalt Ferrites Prepared by the Sol-Gel Method , 2018, Materials.

[3]  H. Harzali,et al.  Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4 (R = Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation , 2018, Journal of Magnetism and Magnetic Materials.

[4]  H. Abdollah-Pour,et al.  Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol–gel based Pechini method , 2018 .

[5]  Ashwini Kumar,et al.  Impact of Rare Earth Gd3+ Ions on Structural and Magnetic Properties of Ni0.5Zn0.5Fe2−xGdxO4 Spinel Ferrite: Useful for Advanced Spintronic Technologies , 2018 .

[6]  D. R. Kumar,et al.  Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite , 2018 .

[7]  N. Ahmad,et al.  Nickel Ferrite Nanomaterials: Synthesis, Characterization and Properties , 2017 .

[8]  C. Rüssel,et al.  The effect of zinc substitution on the magnetism of magnesium ferrite nanostructures crystallized from borate glasses , 2017 .

[9]  D. R. Kumar,et al.  Structural, Spectroscopic and Magnetic Study of Nanocrystalline Cerium-Substituted Magnesium Ferrites , 2017 .

[10]  G. Ji,et al.  A proposed electron transmission mechanism between Fe3+/Co2+ and Fe3+/Fe3+ in the spinel structure and its practical evidence in quaternary Fe0.5Ni0.5Co2S4 , 2016 .

[11]  Jianmei Xu,et al.  Mössbauer and XRD Studies of N0.6Cu0.2Zn0.2Ce(x)Fe2-xO4 Ferrites by Sol-Gel Auto-Combustion. , 2015, Journal of nanoscience and nanotechnology.

[12]  Jianghui Dong,et al.  Mössbauer spectroscopy, structural and magnetic studies of Zn 2+ substituted magnesium ferrite nanomaterials prepared by sol-gel method , 2015 .

[13]  Tamara Slatineanu,et al.  Influence of chromium ion substitution on the structure and properties of zinc ferrite synthesized by the sol–gel auto-combustion method , 2013 .

[14]  C. Rizal,et al.  Magnetic properties of nanostructured Fe-Co alloys , 2013 .

[15]  F. Al-Agel,et al.  Synthesis, characterization and magnetic properties of Cr-substituted Co-Zn ferrites nanopowders , 2013 .

[16]  C. Berndt,et al.  Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. , 2013, Acta biomaterialia.

[17]  H. Shokrollahi,et al.  The role of cobalt ferrite magnetic nanoparticles in medical science. , 2013, Materials science & engineering. C, Materials for biological applications.

[18]  Y. Köseoǧlu,et al.  Effect of chromium addition on the structural, morphological and magnetic properties of nano-crystalline cobalt ferrite system , 2012 .

[19]  A. Šutka,et al.  Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials , 2012, Frontiers of Materials Science.

[20]  S. Singhal,et al.  Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2−xO4, 0 ⩽ x ⩽ 1) synthesized using sol gel auto combustion method , 2012 .

[21]  S. Mor,et al.  Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0.6Zn0.4CrxFe2−xO4 (0 ⩽ x ⩽ 1.0) prepared via sol–gel auto-combustion method , 2012 .

[22]  K. M. Jadhav,et al.  Autocombustion High-Temperature Synthesis, Structural, and Magnetic Properties of CoCrxFe2–xO4 (0 ≤ x ≤ 1.0) , 2011 .

[23]  M. Gabal,et al.  Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties , 2010 .

[24]  W. Bayoumy,et al.  Synthesis characterization and magnetic properties of Cr-substituted NiCuZn nanocrystalline ferrite , 2010 .

[25]  W. Sigmund,et al.  Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method , 2010 .

[26]  C. Chia,et al.  Size and crystallinity-dependent magnetic properties of CoFe2O4 nanocrystals , 2010 .

[27]  Y. Köseoǧlu,et al.  Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route , 2009 .

[28]  M. Iqbal,et al.  Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials , 2008 .

[29]  Wafaa Bayoumi Structural and electrical properties of zinc-substituted cobalt ferrite , 2007 .

[30]  S. Singhal,et al.  XRD, magnetic and Mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAlxFe2−xO4) , 2006 .

[31]  M. Han,et al.  Quantum Couplings and Magnetic Properties of CoCrxFe2-xO4 (0 < x < 1) Spinel Ferrite Nanoparticles Synthesized with Reverse Micelle Method , 2004 .

[32]  K. Jung,et al.  Magnetic properties of Zn2+ substituted ultrafine Co-ferrite grown by a sol-gel method , 2002 .

[33]  Sung Ho Lee,et al.  Crystallographic and magnetic properties of CoCrxFe2−xO4 ferrite powders , 2000 .