Global finite-time observers for a class of nonlinear systems

Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability.

[1]  Wilfrid Perruquetti,et al.  A Global High-Gain Finite-Time Observer , 2010, IEEE Transactions on Automatic Control.

[2]  X. Xia,et al.  Semi-global finite-time observers for nonlinear systems , 2008, Autom..

[3]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[4]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[5]  Ji Li,et al.  A dual‐observer design for global output feedback stabilization of nonlinear systems with low‐order and high‐order nonlinearities , 2009 .

[6]  Yuehua Huang,et al.  Uniformly Observable and Globally Lipschitzian Nonlinear Systems Admit Global Finite-Time Observers , 2009, IEEE Transactions on Automatic Control.

[7]  Wilfrid Perruquetti,et al.  Finite time stability conditions for non-autonomous continuous systems , 2008, Int. J. Control.

[8]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[9]  Xiaohua Xia,et al.  Global asymptotical stability and global finite-time stability for nonlinear homogeneous systems , 2011 .

[10]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[11]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[12]  Sandeep Gulati,et al.  Terminal slider control of nonlinear robotic systems , 1992 .

[13]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[14]  Qing Zhao,et al.  H/sub /spl infin// observer design for lipschitz nonlinear systems , 2006, IEEE Transactions on Automatic Control.

[15]  Prashanth Krishnamurthy,et al.  Global high-gain-based observer and backstepping controller for generalized output-feedback canonical form , 2003, IEEE Trans. Autom. Control..

[16]  Hassan Hammouri,et al.  High gain observer based on a triangular structure , 2002 .

[17]  Xiaohua Xia,et al.  Global Finite-time Observers for a Class of Non-Lipschitz Systems , 2010 .

[18]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[19]  Min-Shin Chen,et al.  Robust Nonlinear Observer for Lipschitz Nonlinear Systems Subject to Disturbances , 2007, IEEE Transactions on Automatic Control.

[20]  Wang Zicai Observer Design for a Class of Nonlinear Systems , 1998 .

[21]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[22]  Junping Du,et al.  Finite-time consensus control for multiple manipulators with unmodeled dynamics , 2013, 2013 American Control Conference.

[23]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[24]  Yanjun Shen,et al.  Semi-Global Finite-Time Observers for a Class of Non-Lipschitz Systems , 2013 .

[26]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[27]  E. Moulay,et al.  Finite time stability and stabilization of a class of continuous systems , 2006 .

[28]  L. Praly Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[29]  J. Lévine,et al.  Nonlinear system immersion, observers and finite-dimensional filters , 1986 .

[30]  Application of inverse system for linearization and decoupling , 1987 .

[31]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[32]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .