Operation of a two-stage fermentation process producing hydrogen and methane from organic waste.
暂无分享,去创建一个
A pilot-scale experimental plant for the production of hydrogen and methane by a two-stage fermentation process was constructed and operated using a mixture of pulverized garbage and shredded paper wastes. Thermophilic hydrogen fermentation was established at 60 degrees C in the first bioreactor by inoculating with seed microflora. Following the hydrogenogenic process, methanogenesis in the second bioreactor was conducted at 55 degrees C using an internal recirculation packed-bed reactor (IRPR). After conducting steady-state operations under a few selected conditions, the overall hydraulic retention time was optimized at 8 d (hydrogenogenesis, 1.2 d; methanogenesis, 6.8 d), producing 5.4 m3/m3/d of hydrogen and 6.1 m3/m3/d of methane with chemical oxygen demand and volatile suspended solid removal efficiencies of 79.3% and 87.8%, respectively. Maximum hydrogen production yield was calculated to be 2.4 mol/mol hexose and 56 L/kg COD loaded. The methanogenic performance of the IRPR was stable, although the organic loading rate and the composition of the effluent from the hydrogenogenic process fluctuated substantially. A clone library analysis of the microflora in the hydrogenogenic reactor indicated that hydrogen-producing Thermoanaerobacterium-related organisms in the inoculum were active in the hydrogen fermentation of garbage and paper wastes, although no aseptic operations were applied. We speculate that the operation at high temperature and the inoculation of thermophiles enabled the selective growth of the introduced microorganisms and gave hydrogen fermentation efficiencies comparable to laboratory experiments. This is the first report on fermentative production of hydrogen and methane from organic waste at an actual level.